60 research outputs found

    Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer-Verlag GmbH for personal use, not for redistribution. The definitive version was published in Oecologia 147 (2006): 391-395, doi:10.1007/s00442-005-0277-z.Nitrogen stable isotopes are frequently used in ecological studies to estimate trophic position and determine movement patterns. Knowledge of tissue-specific turnover and nitrogen discrimination for the study organisms is important for accurate interpretation of isotopic data. We measured δ15 N turnover in liver and muscle tissue in juvenile mummichogs, Fundulus heteroclitus, following a laboratory diet switch. Liver tissue turned over significantly faster than muscle tissue suggesting the potential for a multiple tissue stable isotope approach to study movement and trophic position over different time scales; metabolism contributed significantly to isotopic turnover for both liver and muscle. Nitrogen diet-tissue discrimination was estimated at between 0.0 and 1.2‰ for liver and –1.0 and 0.2‰ for muscle. This is the first experiment to demonstrate a significant variation in δ15 N turnover between liver and muscle tissues in a fish species.This study was funded by NSF LTER grant OCE-9726921

    Settling into an Increasingly Hostile World: The Rapidly Closing “Recruitment Window” for Corals

    Get PDF
    Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a “recruitment window” for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats

    Excretion of catecholamines in rats, mice and chicken

    Get PDF
    Stress assessment favours methods, which do not interfere with an animal’s endocrine status. To develop such non-invasive methods, detailed knowledge about the excretion of hormone metabolites in the faeces and urine is necessary. Our study was therefore designed to generate basic information about catecholamine excretion in rats, mice and chickens. After administration of 3H-epinephrine or 3H-norepinephrine to male and female rats, mice and chickens, all voided excreta were collected for 4 weeks, 3 weeks or for 10 days, respectively. Peak concentrations of radioactivity appeared in one of the first urinary samples of mice and rats and in the first droppings in chickens 0.2–7.2 h after injection. In rats, between 77.3 and 95.6% of the recovered catecholamine metabolites were found in the urine, while in mice, a mean of 76.3% were excreted in the urine. Peak concentrations in the faeces were found 7.4 h post injection in mice, and after about 16.4 h in rats (means). Our study provides valuable data about the route and the profile of catecholamine excretion in three frequently used species of laboratory animals. This represents the first step in the development of a reliable, non-invasive quantification of epinephrine and norepinephrine to monitor sympatho-adrenomedullary activity, although promising results for the development of a non-invasive method were found only for the chicken

    Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in Leishmania major survival in its natural vector

    Get PDF
    Citation: Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M (2013) Characterization of Phlebotomus papatasi Peritrophins, and the Role of PpPer1 in Leishmania major Survival in its Natural Vector. PLoS Negl Trop Dis 7(3): e2132. doi:10.1371/journal.pntd.0002132The peritrophic matrix (PM) plays a key role in compartmentalization of the blood meal and as barrier to pathogens in many disease vectors. To establish an infection in sand flies, Leishmania must escape from the endoperitrophic space to prevent excretion with remnants of the blood meal digestion. In spite of the role played regarding Leishmania survival, little is known about sand fly PM molecular components and structural organization. We characterized three peritrophins (PpPer1, PpPer2, and PpPer3) from Phlebotomus papatasi. PpPer1 and PpPer2 display, respectively, four and one chitin-binding domains (CBDs). PpPer3 on the other hand has two CBDs, one mucin-like domain, and a putative domain with hallmarks of a CBD, but with changes in key amino acids. Temporal and spatial expression analyses show that PpPer1 is expressed specifically in the female midgut after blood feeding. PpPer2 and PpPer3 mRNAs were constitutively expressed in midgut and hindgut, with PpPer3 also being expressed in Malpighian tubules. PpPer2 was the only gene expressed in developmental stages. Interestingly, PpPer1 and PpPer3 expression are regulated by Le. major infection. Recombinant PpPer1, PpPer2 and PpPer3 were obtained and shown to display similar biochemical profiles as the native; we also show that PpPer1 and PpPer2 are able to bind chitin. Knockdown of PpPer1 led to a 44% reduction in protein, which in spite of producing an effect on the percentage of infected sand flies, resulted in a 39% increase of parasite load at 48 h. Our data suggest that PpPer1 is a component for the P. papatasi PM and likely involved in the PM role as barrier against Le. major infection
    corecore