239 research outputs found

    Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is a risk factor for Alzheimer's disease (AD), most likely linked to an impairment of insulin signalling in the brain. Therefore, drugs that enhance insulin signalling may have therapeutic potential for AD. Liraglutide (Victoza) and exenatide (Byetta) are novel long-lasting analogues of the GLP-1 incretin hormone and are currently available to treat diabetes. They facilitate insulin signalling via the GLP-1 receptor (GLP-1R). Numerous <it>in vitro </it>and <it>in vivo </it>studies have shown that GLP-1 analogues have a range of neuroprotective properties. GLP-1Rs are expressed in the hippocampal area of the brain an important site of adult neurogenesis and maintenance of cognition and memory formation. Therefore, if GLP-1 analogues can cross the blood brain barrier, diffuse through the brain to reach the receptors and most importantly activate them, their neuroprotective effects may be realized.</p> <p>Results</p> <p>In the present study we profiled the GLP-1 receptor agonists liraglutide (Victoza) and lixisenatide (Lyxumia). We measured the kinetics of crossing the blood brain barrier (BBB), activation of the GLP-1R by measuring cAMP levels, and physiological effects in the brain on neuronal stem cell proliferation and neurogenesis. Both drugs were able to cross the BBB. Lixisenatide crossed the BBB at all doses tested (2.5, 25, or 250 nmol/kg bw ip.) when measured 30 min post-injection and at 2.5-25 nmol/kg bw ip. 3 h post-injection. Lixisenatide also enhanced neurogenesis in the brain. Liraglutide crossed the BBB at 25 and 250 nmol/kg ip. but no increase was detectable at 2.5 nmol/kg ip. 30 min post-injection, and at 250 nmol/kg ip. at 3 h post-injection. Liraglutide and lixisenatide enhanced cAMP levels in the brain, with lixisenatide being more effective.</p> <p>Conclusions</p> <p>Our results suggest that these novel incretin analogues cross the BBB and show physiological activity and neurogenesis in the brain, which may be of use as a treatment of neurodegenerative diseases.</p

    Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist

    Get PDF
    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2<2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding affinity to the GLP-1R in INS-1 cells (Kd = 13.90±1.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at 30 minutes in circulation and maintained a plateau for >168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist

    GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1a) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression

    No effect of 24 h severe energy restriction on appetite regulation and ad libitum energy intake in overweight and obese males

    Get PDF
    Background/Objectives: Long-term success of weight loss diets might depend on how the appetite regulatory system responds to energy restriction (ER). This study determined the effect of 24 h severe ER on subjective and hormonal appetite regulation, subsequent ad libitum energy intake and metabolism. Subjects/Methods: In randomised order, eight overweight or obese males consumed a 24 h diet containing either 100% (12105 (1174 kJ; energy balance; EB) or 25% (3039 (295) kJ; ER) of estimated daily energy requirements (EER). An individualised standard breakfast containing 25% of EER (3216 (341) kJ) was consumed the following morning and resting energy expenditure, substrate utilisation and plasma concentrations of acylated ghrelin, glucagon-like peptide-1 (GLP-17–36), glucose-dependant insulinotropic peptide (GIP1–42), glucose, insulin and non-esterified fatty acid (NEFA) were determined for 4 h after breakfast. Ad libitum energy intake was assessed in the laboratory on day 2 and via food records on day 3. Subjective appetite was assessed throughout. Results: Energy intake was not different between trials for day 2 (EB: 14946 (1272) kJ; ER: 15251 (2114) kJ; P=0.623), day 3 (EB: 10580 (2457) kJ; 10812 (4357) kJ; P=0.832) or day 2 and 3 combined (P=0.693). Subjective appetite was increased during ER on day 1 (P0.381). Acylated ghrelin, GLP-17–36 and insulin were not different between trials (P>0.104). Post-breakfast area under the curve (AUC) for NEFA (P<0.05) and GIP1–42 (P<0.01) were greater during ER compared with EB. Fat oxidation was greater (P<0.01) and carbohydrate oxidation was lower (P<0.01) during ER, but energy expenditure was not different between trials (P=0.158). Conclusions: These results suggest that 24 h severe ER does not affect appetite regulation or energy intake in the subsequent 48 h. This style of dieting may be conducive to maintenance of a negative EB by limiting compensatory eating behaviour, and therefore may assist with weight loss

    Recent Progress in the Use of Glucagon and Glucagon Receptor Antagonists in the Treatment of Diabetes Mellitus

    Get PDF
    Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6- (1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption, dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout techniques

    Albiglutide, a Long Lasting Glucagon-Like Peptide-1 Analog, Protects the Rat Heart against Ischemia/Reperfusion Injury: Evidence for Improving Cardiac Metabolic Efficiency

    Get PDF
    BACKGROUND: The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS: Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE: Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function

    Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization

    Get PDF
    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer

    Improvement in Peripheral Glucose Uptake After Gastric Bypass Surgery Is Observed Only After Substantial Weight Loss Has Occurred and Correlates with the Magnitude of Weight Lost

    Get PDF
    # 2009 The Author(s). This article is published with open access at Springerlink.com Introduction Altered gut and pancreatic hormone secretion may bolster resolution of insulin resistance after Roux-en-Y gastric bypass (RYGB), but the independent effects of weight loss and hormonal secretion on peripheral glucose disposal are unknown. Methods Two groups of nondiabetic morbidly obese patients were studied: RYGB followed by standardized caloric restriction (RYGB, n=12) or caloric restriction alone (diet, n=10). Metabolic evaluations (euglycemic–hyperinsulinemic clamp, meal tolerance test) were done at baseline and 14 days (both groups) and 6 months after RYGB

    Exendin-4 Improves Blood Glucose Control in Both Young and Aging Normal Non-Diabetic Mice, Possible Contribution of Beta Cell Independent Effects

    Get PDF
    Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages.We treated 3-month and 20 to 22-month old C57/DBA mice with 10 nM/kg exendin-4 for 10 days with measurements of blood glucose and body weight. We performed OGTT and ITT to evaluate the glucose response and insulin sensitivity. Islet morphology and beta cell mass were measured by immuno-staining and beta cell proliferation was evaluated by BrdU incorporation and PCNA staining. Real-time PCR and western blot were used to measure protein changes in the liver tissue after exendin-4 treatment.Exendin-4 treatment improved glycemic control in both 3-month and 20 to 22-month old mice. In both groups of mice, the blood glucose lowering effect was independent of beta cell function as indicated by unchanged beta cell proliferation, insulin secretion or beta cell mass. Moreover, we found that exendin-4 treatment increased hepatic AKT and FOXO1 phosphorylation and inhibited glucose-6-phosphotase (G6P) and Phosphoenolpyruvate carboxykinase (PEPCK) expression in young mice, but this effect was attenuated in aging mice while the insulin sensitivity showed no change in the young group but significantly improved in aging mice.Based on these data, we conclude that the glucose lowering effect of exendin-4 in normal non-diabetic mice was not blunted by aging. We further showed that although there was slight difference in the glucose modulating mechanism of exendin-4 therapy in young and aged mice, the improved glucose control seemed uncorrelated with increased beta cell mass or insulin secretion
    • …
    corecore