74 research outputs found

    Relationship of creative projects in anatomy to medical student professionalism, test performance and stress: an exploratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anatomy course offers important opportunities to develop professionalism at an early stage in medical education. It is an academically significant course that also engenders stress in some students.</p> <p>Methods</p> <p>Over a three-year period, 115 of 297 students completed creative projects. Thirty-four project completers and 47 non-completers consented to participate in the study. Projects were analyzed for professionalism themes using grounded theory. A subset of project completers and non-completers were interviewed to determine their views about the stress of anatomy and medical school, as well as the value of the creative projects. We also compared test performance of project completers and non-completers.</p> <p>Results</p> <p>Projects completed early in the course often expressed ambivalence about anatomy, whereas later projects showed more gratitude and sense of awe. Project completers tended to report greater stress than noncompleters, but stated that doing projects reduced stress and caused them to develop a richer appreciation for anatomy and medicine. Project completers performed significantly lower than non-completers on the first written exam (pre-project). Differences between groups on individual exams after both the first and second creative project were nonsignificant.</p> <p>Conclusion</p> <p>For some students, creative projects may offer a useful way of reflecting on various aspects of professionalism while helping them to manage stress.</p

    Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relative contribution of lean and fat to the determination of bone mineral density (BMD) in postmenopausal women is a contentious issue. The present study was undertaken to test the hypothesis that lean mass is a better determinant of BMD than fat mass.</p> <p>Methods</p> <p>This cross-sectional study involved 210 postmenopausal women of Vietnamese background, aged between 50 and 85 years, who were randomly sampled from various districts in Ho Chi Minh City (Vietnam). Whole body scans, femoral neck, and lumbar spine BMD were measured by DXA (QDR 4500, Hologic Inc., Waltham, MA). Lean mass (LM) and fat mass (FM) were derived from the whole body scan. Furthermore, lean mass index (LMi) and fat mass index (FMi) were calculated as ratio of LM or FM to body height in metre squared (m<sup>2</sup>).</p> <p>Results</p> <p>In multiple linear regression analysis, both LM and FM were independent and significant predictors of BMD at the spine and femoral neck. Age, lean mass and fat mass collectively explained 33% variance of lumbar spine and 38% variance of femoral neck BMD. Replacing LM and FM by LMi and LMi did not alter the result. In both analyses, the influence of LM or LMi was greater than FM and FMi. Simulation analysis suggested that a study with 1000 individuals has a 78% chance of finding the significant effects of both LM and FM, and a 22% chance of finding LM alone significant, and zero chance of finding the effect of fat mass alone.</p> <p>Conclusions</p> <p>These data suggest that both lean mass and fat mass are important determinants of BMD. For a given body size -- measured either by lean mass or height --women with greater fat mass have greater BMD.</p

    Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function

    Get PDF
    Neurodegenerative disorders are associated with impaired cognitive function and worse physical health outcomes. This study aims to test whether polygenic risk for Alzheimer’s disease, Amyotrophic Lateral Sclerosis (ALS), or frontotemporal dementia (FTD) is associated with cognitive function and physical health in the UK Biobank, a cohort of healthy individuals. Group-based analyses were then performed to compare the top and bottom 10% for the three neurodegenerative polygenic risk scores; these groups were compared on the cognitive and physical health variables. Higher polygenic risk for AD, ALS, and FTD was associated with lower cognitive performance. Higher polygenic risk for FTD was also associated with increased forced expiratory volume in 1s and peak expiratory flow. A significant group difference was observed on the symbol digit substitution task between individuals with high polygenic risk for FTD and high polygenic risk for ALS. The results suggest some overlap between polygenic risk for neurodegenerative disorders, cognitive function and physical health

    Exogenous Ether Lipids Predominantly Target Mitochondria

    Get PDF
    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking

    Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ

    Genomic view of the evolution of the complement system

    Get PDF
    The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA
    • …
    corecore