3,752 research outputs found

    Hydrostatic pressure induced Dirac semimetal in black phosphorus

    Get PDF
    Motivated by recent experimental observation of an hydrostatic pressure induced transition from semiconductor to semimetal in black phosphorus [Chen et al. in arXiv:1504.00125], we present the first principles calculation on the pressure effect of the electronic structures of black phosphorus. It is found that the band crossover and reversal at the Z point occur around the critical pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma point and evolve into two hole-type Fermi pockets, and those in the Z-M lines move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0 Gpa. It demonstrates clearly that the Lifshitz transition occurs at Pc1P_{c1} from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space symmetry of bulk. This suggests the bright perspective of black phosphorus for optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table

    Phenotypic and functional modulation of porcine monocyte-derived dendritic cells for foot-and-mouth disease virus

    Get PDF
    Dendritic cells (DCs) play an important role in inducing primary antigen-specific immune responses to viral antigens. In this study, the peripheral blood monocyte-derived (PBMC) were cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4. After 6 days of culture, immature monocyte-derived dendritic cells (Mo-DCs) were generated. The addition of lipopolysaccharide (LPS) during differentiation of Mo-DCs enhanced their ability to stimulate allogeneic mixed lymphocyte reaction (MLR) and alter their ability to produce cytokines. Then, we investigated the interaction between foot-and-mouth disease virus (FMDV) and porcine Mo-DCs in vitro and confirmed that the immunological phenotype and function of porcine Mo-DCs were modulated during FMDV infection. A down-regulated expression of MHC II and CD1 were observed at 48 h post FMDV infection. In addition, the infected porcine Mo-DCs exhibited ultrastructural morphological changes, FMDV-infected porcine Mo-DCs failed to stimulate T cell proliferation in vitro. Moreover, infection of porcine Mo-DCs in vitro induced the secretion of IFN-γ and the suppressive cytokine IL-10 in porcine Mo-DCs. Results indicated that the down-regulation of MHC II and CD1 molecules and the increased secretion of the IFN-γ and IL-10 cytokines might be the mechanisms that FMDV uses to evade the host immune responses.Key words: Dendritic cells, foot-and-mouth disease virus, MHC II, modulation, cytokines

    B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2

    Full text link
    Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties. © 2013 Ferrata Storti Foundation

    Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties

    Get PDF
    We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range of 100–700 nm. These micro/nanotubes showed a strong emission peak at 387 nm and two weak emission peaks at 422 and 485 nm, respectively, and have the hydrophobic properties with a contact angle of 121°. Single ZnO micro/nanotube-based field-effect transistor was also fabricated, which shows typical n-type semiconducting behavior

    A Femtosecond Neutron Source

    Full text link
    The possibility to use the ultrashort ion bunches produced by circularly polarized laser pulses to drive a source of fusion neutrons with sub-optical cycle duration is discussed. A two-side irradiation of a thin foil deuterated target produces two countermoving ion bunches, whose collision leads to an ultrashort neutron burst. Using particle-in-cell simulations and analytical modeling, it is evaluated that, for intensities of a few 1019Wcm210^{19} W cm^{-2}, more than 10310^3 neutrons per Joule may be produced within a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.Comment: 15 pages, 3 figure

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic

    Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2008 The American Society of Gene Therapy.Due to its early onset and severe prognosis, cystic fibrosis (CF) has been suggested as a candidate disease for in utero gene therapy. In 1997, a study was published claiming that to how transient prenatal expression of CF transmembrane conductance regulator (CFTR) from an in utero –injected adenovirus vector could achieve permanent reversal of the CF intestinal pathology in adult CF knockout mice, despite the loss of CFTR transgene expression by birth. This would imply that the underlying cause of CF is a prenatal defect for which lifelong cure can be achieved by transient prenatal expression of CFTR. Despite criticism at the time of publication, no independent verification of this contentious finding has been published so far. This is vital for the development of future therapeutic strategies as it may determine whether CF gene therapy should be performed prenatally or postnatally. We therefore reinvestigated this finding with an identical adenoviral vector and a knockout CF mouse line (CftrtmlCam) with a completely inbred genetic background to eliminate any effects due to genetic variation. After delivery of the CFTR-expressing adenovirus to the fetal mouse, both vector DNA and transgenic CFTR expression were detected in treated animals postpartum but statistically no significant difference in survival was observed between the Cftr–/– mice treated with the CFTR-adenovirus and those treated with the control vector.Sport Aiding Medical Research for Kids, the Cystic Fibrosis Trust, and the Katharine Dormandy Trust

    High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence

    Get PDF
    Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor–Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence
    corecore