362 research outputs found

    An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    Get PDF
    BACKGROUND: The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). METHODS: The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. RESULTS: From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin(-1 )(ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin(-1), respectively. CONCLUSION: Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation

    Efficient screening for ‘genetic pollution’ in an anthropogenic crested newt hybrid zone

    Get PDF
    Genetic admixture between endangered native and non-native invasive species poses a complex conservation problem. Decision makers often need to quickly screen large numbers of individuals and distinguish natives from morphologically similar invading species and their genetically admixed offspring. We describe a protocol using the fast and economical Kompetitive Allele Specific PCR (KASP) technology for genotyping on a large scale. We apply this protocol to a case study of hybridization between a native and an invasive crested newt species. Using previously published data, we designed a panel of ten nuclear and one mitochondrial diagnostic SNP markers. We observed only minor differences between KASP and next-generation sequencing data previously produced with the Ion Torrent platform. We briefly discuss practical considerations for tackling the insidious conservation problem of genetic admixture between native and invasive species. The KASP genotyping protocol facilitates policy decision making for the crested newt case and is generally applicable to invasive hybridization with endangered taxa

    Genetic and environmental influences on the relation between attention problems and Attention Deficit Hyperactivity Disorder.

    Get PDF
    Objective: The assessment of symptoms of ADHD in children is usually based on a clinical interview or a behavior checklist. The aim of the present study is to investigate the extent to which these instruments measure an underlying construct and to estimate the genetic and environmental influences on individual differences in ADHD. Methods: Maternal ratings were collected on 10,916 twins from 5,458 families. Child Behavior Checklist (CBCL) ratings were available for 10,018, 6,565, and 5,780 twins at the ages 7, 10, and 12, respectively. The Conners Rating Scale (4,887 twins) and the DSM interview (1,006 twins) were completed at age 12. The magnitude of genetic and environmental influences on the variance of the three measures of ADHD and the covariance among the three measures of ADHD was obtained. Results: Phenotypic correlations range between .45 and .77. Variances and covariances of the measurements were explained mainly by genetic influences. The model that provided the best account of the data included an independent pathway for additive and dominant genetic effects. The genetic correlations among the measures collected at age 12 varied between .63 and 1.00. Conclusions: The genetic overlap between questionnaire ratings and the DSM-IV diagnosis of ADHD is high. Clinical and research implications of these findings are presented

    Does Childhood Executive Function Predict Adolescent Functional Outcomes in Girls with ADHD?

    Get PDF
    We prospectively followed an ethnically and socioeconomically diverse sample of preadolescent girls with ADHD (n = 140) and matched comparison girls (n = 88) over a period of 5 years, from middle childhood through early/mid-adolescence. Our aim was to examine the ability of measures of childhood executive function (EF) to predict functional outcomes in adolescence. Measures of neuropsychological functioning comprised the childhood predictors, with academic, social, and global functioning serving as adolescent criterion measures. Results indicated that childhood EF predicted (a) academic achievement and social functioning across our entire sample (independent of diagnostic group status) and (b) global functioning only in girls with ADHD (independent of IQ). These results highlight the non-specificity of EF deficits and suggest the importance of assessing and developing interventions that target EF impairments, particularly in those at high-risk for negative outcomes, in order to prevent long-term difficulties across a range of important functional domains

    Evidence-Based Assessment of Child Obsessive Compulsive Disorder: Recommendations for Clinical Practice and Treatment Research

    Get PDF
    Obsessive-compulsive disorder (OCD) presents heterogeneously and can be difficult to assess in youth. This review focuses on research-supported assessment approaches for OCD in childhood. Content areas include pre-visit screening, diagnostic establishment, differential diagnosis, assessment of comorbid psychiatric conditions, tracking symptom severity, determining psychosocial functioning, and evaluating clinical improvement. Throughout this review, similarities and differences between assessment approaches geared towards clinical and research settings are discussed

    Physiological IRE-1-XBP-1 and PEK-1 Signaling in Caenorhabditis elegans Larval Development and Immunity

    Get PDF
    Endoplasmic reticulum (ER) stress activates the Unfolded Protein Response, a compensatory signaling response that is mediated by the IRE-1, PERK/PEK-1, and ATF-6 pathways in metazoans. Genetic studies have implicated roles for UPR signaling in animal development and disease, but the function of the UPR under physiological conditions, in the absence of chemical agents administered to induce ER stress, is not well understood. Here, we show that in Caenorhabditis elegans XBP-1 deficiency results in constitutive ER stress, reflected by increased basal levels of IRE-1 and PEK-1 activity under physiological conditions. We define a dynamic, temperature-dependent requirement for XBP-1 and PEK-1 activities that increases with immune activation and at elevated physiological temperatures in C. elegans. Our data suggest that the negative feedback loops involving the activation of IRE-1-XBP-1 and PEK-1 pathways serve essential roles, not only at the extremes of ER stress, but also in the maintenance of ER homeostasis under physiological conditions.National Institutes of Health (U.S.) (grant R01-GM084477

    Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic inactivation of tumor suppressor genes (TSG) by promoter CpG island hypermethylation is a hallmark of cancer. To assay its extent in human lymphoma, methylation of 24 TSG was analyzed in lymphoma-derived cell lines as well as in patient samples.</p> <p>Methods</p> <p>We screened for TSG methylation using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in 40 lymphoma-derived cell lines representing anaplastic large cell lymphoma, Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Hodgkin lymphoma and mantle cell lymphoma (MCL) as well as in 50 primary lymphoma samples. The methylation status of differentially methylated <it>CD44 </it>was verified by methylation-specific PCR and bisulfite sequencing. Gene expression of <it>CD44 </it>and its reactivation by DNA demethylation was determined by quantitative real-time PCR and on the protein level by flow cytometry. Induction of apoptosis by anti-CD44 antibody was analyzed by annexin-V/PI staining and flow cytometry.</p> <p>Results</p> <p>On average 8 ± 2.8 of 24 TSG were methylated per lymphoma cell line and 2.4 ± 2 of 24 TSG in primary lymphomas, whereas 0/24 TSG were methylated in tonsils and blood mononuclear cells from healthy donors. Notably, we identified that <it>CD44 </it>was hypermethylated and transcriptionally silenced in all BL and most FL and DLBCL cell lines, but was usually unmethylated and expressed in MCL cell lines. Concordant results were obtained from primary lymphoma material: <it>CD44 </it>was not methylated in MCL patients (0/11) whereas <it>CD44 </it>was frequently hypermethylated in BL patients (18/29). In cell lines with <it>CD44 </it>hypermethylation, expression was re-inducible at mRNA and protein levels by treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine, confirming epigenetic regulation of <it>CD44</it>. CD44 ligation assays with a monoclonal anti-CD44 antibody showed that CD44 can mediate apoptosis in CD44<sup>+ </sup>lymphoma cells. <it>CD44 </it>hypermethylated, CD44<sup>- </sup>lymphoma cell lines were consistently resistant towards anti-CD44 induced apoptosis.</p> <p>Conclusion</p> <p>Our data show that <it>CD44 </it>is epigenetically regulated in lymphoma and undergoes <it>de novo </it>methylation in distinct lymphoma subtypes like BL. Thus <it>CD44 </it>may be a promising new epigenetic marker for diagnosis and a potential therapeutic target for the treatment of specific lymphoma subtypes.</p

    The Frequency of Malaria Is Similar among Women Receiving either Lopinavir/Ritonavir or Nevirapine-based Antiretroviral Treatment

    Get PDF
    HIV protease inhibitors (PIs) show antimalarial activity in vitro and in animals. Whether this translates into a clinical benefit in HIV-infected patients residing in malaria-endemic regions is unknown. We studied the incidence of malaria, as defined by blood smear positivity or a positive Plasmodium falciparum histidine-rich protein 2 antigen test, among 444 HIV-infected women initiating antiretroviral treatment (ART) in the OCTANE trial (A5208; ClinicalTrials.gov: NCT00089505). Participants were randomized to treatment with PI-containing vs. PI-sparing ART, and were followed prospectively for ≥48 weeks; 73% also received cotrimoxazole prophylaxis. PI-containing treatment was not associated with protection against malaria in this study population

    IRF4 Is a Suppressor of c-Myc Induced B Cell Leukemia

    Get PDF
    Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator in B cell development and function. We have previously shown that IRF4, together with IRF8, orchestrates pre-B cell development by limiting pre-B cell expansion and by promoting pre-B cell differentiation. Here, we report that IRF4 suppresses c-Myc induced leukemia in EμMyc mice. Our results show that c-Myc induced leukemia was greatly accelerated in the IRF4 heterozygous mice (IRF4+/−Myc); the average age of mortality in the IRF4+/−Myc mice was only 7 to 8 weeks but was 20 weeks in the control mice. Our results show that IRF4+/−Myc leukemic cells were derived from large pre-B cells and were hyperproliferative and resistant to apoptosis. Further analysis revealed that the majority of IRF4+/−Myc leukemic cells inactivated the wild-type IRF4 allele and contained defects in Arf-p53 tumor suppressor pathway. p27kip is part of the molecular circuitry that controls pre-B cell expansion. Our results show that expression of p27kip was lost in the IRF4+/−Myc leukemic cells and reconstitution of IRF4 expression in those cells induced p27kip and inhibited their expansion. Thus, IRF4 functions as a classical tumor suppressor to inhibit c-Myc induced B cell leukemia in EμMyc mice

    Promiscuous drugs compared to selective drugs (promiscuity can be a virtue)

    Get PDF
    BACKGROUND: The word selectivity describes a drug's ability to affect a particular cell population in preference to others. As part of the current state of art in the search for new therapeutic agents, the property of selectivity is a mode of action thought to have a high degree of desirability. Consequently there is a growing activity in this area of research. Selectivity is generally a worthy property in a drug because a drug having high selectivity may have a dramatic effect when there is a single agent that can be targeted against the appropriate molecular-driver involved in the pathogenesis of a disease. An example is chronic myeloid leukemia (CML). CML has a specific chromosomal abnormality, the Philadelphia chromosome, that results in a single gene that produces an abnormal protein DISCUSSION: There is a burgeoning understanding of the cellular mechanisms that control the etiology and pathogeneses of diseases. This understanding both enables and motivates the development of drugs that induce a specific action in a selected cell population; i.e., a targeted treatment. Consequently, drugs that can target distinct molecular targets involved in pathologic/pathogenetic processes, or signal-transduction pathways, are being developed. However, in most cases, diseases involve multiple abnormalities. A disease may be associated with more than one dysfunctional protein and these may be out-of-balance with each other. Likewise a drug might strongly target a protein that shares a similar active domain with other proteins. A drug may also target pleiotropic cytokines, or other proteins that have multi-physiological functions. In this way multiple normal cellular pathways can be simultaneously influenced. Long term experience with drugs supposedly designed for only a single target, but which unavoidably involve other functional effects, is uncovering the fact that molecular targeting is not medically flawless. SUMMARY: We contend that an ideal drug may be one whose efficacy is based not on the inhibition of a single target, but rather on the rebalancing of the several proteins or events, that contribute to the etiology, pathogeneses, and progression of diseases, i.e., in effect a promiscuous drug. Ideally, if this could be done at minimum drug concentration, side effects could be minimized. Corollaries to this argument are that the growing fervor for researching truly selective drugs may be imprudent when considering the totality of responses; and that the expensive screening techniques used to discover these, may be both medically and financially inefficient
    corecore