208 research outputs found

    Process transparency on construction sites : examples from construction companies in Brazil

    Get PDF
    Process transparency is the core concept in Visual Management (VM), which is one of the founding blocks of the Toyota Production System. This paper presents the preliminary results of a collaborative research conducted between Brazil and the UK, as part of a research effort focused on the application of Visual Management in construction. How process transparency is realized on construction sites is the main research question of the paper. The use of this concept and the implementation of the transparency theory were investigated through multiple case studies, carried out in nine different construction companies. The findings are explained through six theoretical transparency increasing approaches. The affecting parameters in the application of, the management’s perception of and several methods in process transparency in construction were identified. Further work, especially exploring the functions of process transparency on construction sites and reflecting the worker perception of the issue, is necessary to elaborate the process transparency concept

    Modelling of the regulation of the hilA promoter of type three secretion system of Salmonella enterica serovar Typhimurium

    Get PDF
    One of the most common modes of secretion of toxins in gram-negative bacteria is via the type three secretion system (TTSS), which enables the toxins to be specifically exported into the host cell. The hilA gene product is a key regulator of the expression of the TTSS located on the pathogenicity island (SPI-1) of Salmonella enterica serovar Typhimurium. It has been proposed earlier that the regulation of HilA expression is via a complex feedforward loop involving the transactivators HilD, HilC and RtsA. In this paper, we have constructed a mathematical model of regulation of hilA-promoter by all the three activators using two feedforward loops. We have modified the model to include additional complexities in regulation such as the proposed positive feedback and cross regulations of the three transactivators. Results of the various models indicate that the basic model involving two Type I coherent feedforward loops with an OR gate is sufficient to explain the published experimental observations. We also discuss two scenarios where the regulation can occur via monomers or heterodimers of the transactivators and propose experiments that can be performed to distinguish the two modes of regulator function

    Caipirini: using gene sets to rank literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Keeping up-to-date with bioscience literature is becoming increasingly challenging. Several recent methods help meet this challenge by allowing literature search to be launched based on lists of abstracts that the user judges to be 'interesting'. Some methods go further by allowing the user to provide a second input set of 'uninteresting' abstracts; these two input sets are then used to search and rank literature by relevance. In this work we present the service 'Caipirini' (<url>http://caipirini.org</url>) that also allows two input sets, but takes the novel approach of allowing ranking of literature based on one or more sets of genes.</p> <p>Results</p> <p>To evaluate the usefulness of Caipirini, we used two test cases, one related to the human cell cycle, and a second related to disease defense mechanisms in <it>Arabidopsis thaliana</it>. In both cases, the new method achieved high precision in finding literature related to the biological mechanisms underlying the input data sets.</p> <p>Conclusions</p> <p>To our knowledge Caipirini is the first service enabling literature search directly based on biological relevance to gene sets; thus, Caipirini gives the research community a new way to unlock hidden knowledge from gene sets derived via high-throughput experiments.</p

    Comparative study between photodynamic therapy with urucum + Led and probiotics in halitosis reduction-protocol for a controlled clinical trial.

    Get PDF
    BACKGROUND: Halitosis is a term that defines any foul odor emanating from the oral cavity. The origin may be local or systemic. The aim of the proposed protocol is to determine whether treatment with antimicrobial photodynamic therapy (aPDT) and treatment with probiotics are effective at eliminating halitosis. MATERIALS AND METHODS: Eighty-eight patients, from 18 to 25 years old with a diagnosis of halitosis (H2S≥112 ppb, determined by gas chromatography) will be randomly allocated to four groups (n = 22) that will receive different treatments: Group 1 -treatment with teeth brushing, dental floss and tongue scraper; Group 2 -brushing, dental floss and aPDT; Group 3 -brushing, dental floss and probiotics; Group 4 -brushing, flossing, aPDT and probiotics. The results of the halimetry will be compared before, immediately after, seven days and thirty days after treatment. The microbiological analysis of the coated tongue will be performed at these same times. The normality of the data will be determined using the Shapiro-Wilk test. Data with normal distribution will be analyzed using analysis of variance (ANOVA). Non-parametric data will be analyzed using the Kruskal-Wallis test. The Wilcoxon test will be used to analyze the results of each treatment at the different evaluation periods. CLINICAL TRAIL REGISTRATION: NCT03996044

    Crystal Structure of PrgI-SipD: Insight into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands

    Get PDF
    Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface

    Sequence-Based Prediction of Type III Secreted Proteins

    Get PDF
    The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis, recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins, taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with certain physico-chemical properties. The resulting computational model revealed a strong type III secretion signal in the N-terminus that can be used to detect effectors with sensitivity of ∼71% and selectivity of ∼85%. This signal seems to be taxonomically universal and conserved among animal pathogens and plant symbionts, since we could successfully detect effector proteins if the respective group was excluded from training. The application of our prediction approach to 739 complete bacterial and archaeal genome sequences resulted in the identification of between 0% and 12% putative TTSS effector proteins. Comparison of effector proteins with orthologs that are not secreted by the TTSS showed no clear pattern of signal acquisition by fusion, suggesting convergent evolutionary processes shaping the type III secretion signal. The newly developed program EffectiveT3 (http://www.chlamydiaedb.org) is the first universal in silico prediction program for the identification of novel TTSS effectors. Our findings will facilitate further studies on and improve our understanding of type III secretion and its role in pathogen–host interactions

    Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids

    Get PDF
    Background: Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified. Methodology/Principal Findings: In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA) and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a s 54-enhancer binding protein) of Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA. Conclusion/Significance: The induction of T3SS expression by OCA and TCA is moderated through the rsmB-Rsm
    corecore