21 research outputs found

    Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

    Get PDF
    Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation

    Protein Phosphatase Magnesium Dependent 1A (PPM1A) Plays a Role in the Differentiation and Survival Processes of Nerve Cells

    Get PDF
    The serine/threonine phosphatase type 2C (PPM1A) has a broad range of substrates, and its role in regulating stress response is well established. We have investigated the involvement of PPM1A in the survival and differentiation processes of PC6-3 cells, a subclone of the PC12 cell line. This cell line can differentiate into neuron like cells upon exposure to nerve growth factor (NGF). Overexpression of PPM1A in naive PC6-3 cells caused cell cycle arrest at the G2/M phase followed by apoptosis. Interestingly, PPM1A overexpression did not affect fully differentiated cells. Using PPM1A overexpressing cells and PPM1A knockdown cells, we show that this phosphatase affects NGF signaling in PC6-3 cells and is engaged in neurite outgrowth. In addition, the ablation of PPM1A interferes with NGF-induced growth arrest during differentiation of PC6-3 cells

    Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP

    Get PDF
    Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3-5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} NωN^{\omega } \end{document}-Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP

    Defining Polyamory: A Thematic Analysis of Lay People’s Definitions

    Get PDF
    This study aimed to analyze laypeople’s definitions of polyamory and compare definitions presented by people who are not willing to engage in consensual non-monogamy (CNM) and those who are or are willing to be in a CNM relationship. This exploratory qualitative study used data collected from a convenience sample through a web survey, where people answered the question “What does polyamory mean?” We conducted thematic analysis to examine patterns in meaning and used demographic data to compare themes among groups. The final sample comprised 463 participants aged 18–66 years (M = 32.19, SD = 10.02), mostly heterosexual (60%). Of the total sample, 54% were in a monogamous relationship, followed by 21% not in a relationship, and 13% in a non-monogamous relationship. Analysis showed that people define polyamory mostly as a set of behaviors in a relationship, followed by the potential of multiple relationships or feelings for multiple people. Definitions also include emotional, sexual, and ethical aspects. People in CNM relationships are more likely to define polyamory as constituting a potential form of relating, focus more on interpersonal feelings and ethics, and include consent in their definitions than those unwilling to engage in CNM. People in CNM relationships also focus particularly on the non-central role of sex within these relationships, which might challenge assumptions about sexuality in these relationships in clinical and research settings

    Regulation of neuronal survival by the extracellular signal-regulated protein kinase 5

    No full text
    The extracellular signal-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase (MAPK) that phosphorylates and regulates various transcription factors in response to growth factors and extra-cellular stresses. To address its biological function during the development of the peripheral nervous system (PNS), we have engineered a novel model of sympathetic neurons in which the erk5 gene can be deleted in vitro. Our data provide for the first time genetic evidence that ERK5 is required to mediate the survival response of neurons to nerve growth factor (NGF). Increased cell death associated with the loss of ERK5 is caused by elevated expression of the BH3-only members of the Bcl-2 family, Bad and Bim. Further investigation indicated that ERK5 suppresses the transcription of the bad and the bim genes via Ca(++)/cAMP response element binding protein (CREB) and Forkhead box 03a (Foxo3a), respectively. Consistently, we found that the phosphorylation of both p90 ribosomal S6 kinase (RSK) and protein kinase B (PKB) is impaired in neurons lacking ERK5. Together these findings reveal a novel signaling mechanism that promotes neuronal survival during the development of the PNS

    Shc signaling in differentiating neural progenitor cells

    No full text
    Previously we found that the availability of ShcA adapter is maximal in neural stem cells but that it is absent in mature neurons. Here we report that ShcC, unlike ShcA, is not present in neural stem/progenitor cells, but is expressed after cessation of their division and becomes selectively enriched in mature neurons. Analyses of its activity in differentiating neural stem/progenitor cells revealed that ShcC positively affects their viability and neuronal maturation via recruitment of the PI3K-Akt-Bad pathway and persistent activation of the MAPK pathway. We suggest that the switch from ShcA to ShcC modifies the responsiveness of neural stem/progenitor cells to extracellular stimuli, generating proliferation (with ShcA) or survival/differentiation (with ShcC)
    corecore