29 research outputs found

    Microbial Symbionts in Insects Influence Down-Regulation of Defense Genes in Maize

    Get PDF
    Diabrotica virgifera virgifera larvae are root-feeding insects and significant pests to maize in North America and Europe. Little is known regarding how plants respond to insect attack of roots, thus complicating the selection for plant defense targets. Diabrotica virgifera virgifera is the most successful species in its genus and is the only Diabrotica beetle harboring an almost species-wide Wolbachia infection. Diabrotica virgifera virgifera are infected with Wolbachia and the typical gut flora found in soil-living, phytophagous insects. Diabrotica virgifera virgifera larvae cannot be reared aseptically and thus, it is not possible to observe the response of maize to effects of insect gut flora or other transient microbes. Because Wolbachia are heritable, it is possible to investigate whether Wolbachia infection affects the regulation of maize defenses. To answer if the success of Diabrotica virgifera virgifera is the result of microbial infection, Diabrotica virgifera virgifera were treated with antibiotics to eliminate Wolbachia and a microarray experiment was performed. Direct comparisons made between the response of maize root tissue to the feeding of antibiotic treated and untreated Diabrotica virgifera virgifera show down-regulation of plant defenses in the untreated insects compared to the antibiotic treated and control treatments. Results were confirmed via QRT-PCR. Biological and behavioral assays indicate that microbes have integrated into Diabrotica virgifera virgifera physiology without inducing negative effects and that antibiotic treatment did not affect the behavior or biology of the insect. The expression data and suggest that the pressure of microbes, which are most likely Wolbachia, mediate the down-regulation of many maize defenses via their insect hosts. This is the first report of a potential link between a microbial symbiont of an insect and a silencing effect in the insect host plant. This is also the first expression profile for a plant attacked by a root-feeding insect

    Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest

    Get PDF
    Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns - or states - are detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We find that poorer cognitive performance is associated with weaker FC temporal similarity together with altered switching between FC states. These results provide new evidence linking the switching dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of resting-state activity for effective cognitive processing.This project was financed by the Fundação Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project “Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)”), co-financed by Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) and under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement through the European Regional Development Fundinfo:eu-repo/semantics/publishedVersio

    Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics

    Get PDF
    This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-basedmodels provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications.Infrastructures, Systems and ServicesTechnology, Policy and Managemen

    Animal geographies II: methods

    No full text
    ArticleAnimal geographies challenge not only the place and placing of the human and the animal but, critically, the methods we use to engage with both in relation. This second review considers the various methodological implications of a more-than-human geography and explores the innovative approaches that animal geographers employ to speak with non-human animals

    Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 Kb segment of DNA spanning the insulin gene and associated VNTR

    No full text
    Recent studies have demonstrated that a locus at 11p15,5 confers susceptibility to insulin dependent diabetes mellitus (IDDM). This locus has been shown to lie within a 19 kb region. We present a detailed sequence comparison of the predominant haplotypes found in this region in a population of French Caucasian IDDM patients and controls. Identification of polymorphisms both associated and unassociated with IDDM has allowed us to define further the region of association to 4.1 kb. Ten polymorphisms within this region are in strong linkage disequilibrium with each other and extend across the insulin gene locus and the variable number tandem repeat (VNTR) situated immediately 5' to the insulin gene. These represent a set of candidate disease polymorphisms one or more of which may account for the susceptibility to IDDM
    corecore