68 research outputs found
Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics
We present a quasi-model-independent search for the physics responsible for
electroweak symmetry breaking. We define final states to be studied, and
construct a rule that identifies a set of relevant variables for any particular
final state. A new algorithm ("Sleuth") searches for regions of excess in those
variables and quantifies the significance of any detected excess. After
demonstrating the sensitivity of the method, we apply it to the semi-inclusive
channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV
at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no
evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development
Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells
In this study, we explore the therapeutic potential of lapatinib a selective inhibitor of both the EGFR and HER2 tyrosine kinases for the treatment of endometrial cancer. The effect of lapatinib on tumour cell growth and receptor activation was studied in a panel of human endometrial cancer cell lines. Candidate molecular markers predicting sensitivity were assessed by baseline gene expression profiling, ELISA, and western blot analyses. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions between chemotherapeutic drugs and lapatinib. Concentration-dependent anti-proliferative effects of lapatinib were seen in all endometrial cancer cell lines tested, but varied significantly between individual cell lines (IC50 range: 0.052–10.9 μmol). HER2 overexpression or increased expression of EGFR was significantly associated with in vitro sensitivity (P=0.024 or 0.011, respectively). Lapatinib exerts growth inhibition in a PTEN-independent manner. Sensitive cell lines also exhibited increased expression of EGFR ligands or HER3. In contrast, lapatinib-resistant cell lines exhibited high androgen receptor (AR) levels or epithelial-to-mesenchymal transition (post-EMT) features. In endometrial cancer cells, at a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for lapatinib plus carboplatin, paclitaxel, docetaxel, and doxorubicin. These observations provide a clear biologic rational to test lapatinib as a single agent or in combination with chemotherapy in endometrial cancer with HER2 overexpression. Expression of EGFR, its ligands, HER3, AR, and post-EMT markers warrant further evaluation to help define patients with HER2-nonoverexpressing endometrial cancer most likely to benefit from lapatinib
The academy for future science faculty:randomized controlled trial of theory-driven coaching to shape development and diversity of early-career scientists
Background: Approaches to training biomedical scientists have created a talented research community. However, they have failed to create a professional workforce that includes many racial and ethnic minorities and women in proportion to their representation in the population or in PhD training. This is particularly true at the faculty level. Explanations for the absence of diversity in faculty ranks can be found in social science theories that reveal processes by which individuals develop identities, experiences, and skills required to be seen as legitimate within the profession. Methods/Design: Using the social science theories of Communities of Practice, Social Cognitive Career Theory, identity formation, and cultural capital, we have developed and are testing a novel coaching-based model to address some of the limitations of previous diversity approaches. This coaching intervention (The Academy for Future Science Faculty) includes annual in-person meetings of students and trained faculty Career Coaches, along with ongoing virtual coaching, group meetings and communication. The model is being tested as a randomized controlled trial with two cohorts of biomedical PhD students from across the U.S., one recruited at the start of their PhDs and one nearing completion. Stratification into the experimental and control groups, and to coaching groups within the experimental arms, achieved equal numbers of students by race, ethnicity and gender to the extent possible. A fundamental design element of the Academy is to teach and make visible the social science principles which highly influence scientific advancement, as well as acknowledging the extra challenges faced by underrepresented groups working to be seen as legitimate within the scientific communities. Discussion: The strategy being tested is based upon a novel application of the well-established principles of deploying highly skilled coaches, selected and trained for their ability to develop talents of others. This coaching model is intended to be a complement, rather than a substitute, for traditional mentoring in biomedical research training, and is being tested as such
Activity of the multikinase inhibitor dasatinib against ovarian cancer cells
BackgroundHere, we explore the therapeutic potential of dasatinib, a small-molecule inhibitor that targets multiple cytosolic and membrane-bound tyrosine kinases, including members of the Src kinase family, EphA2, and focal adhesion kinase for the treatment of ovarian cancer.MethodsWe examined the effects of dasatinib on proliferation, invasion, apoptosis, cell-cycle arrest, and kinase activity using a panel of 34 established human ovarian cancer cell lines. Molecular markers for response prediction were studied using gene expression profiling. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions with chemotherapeutic drugs.ResultsConcentration-dependent anti-proliferative effects of dasatinib were seen in all ovarian cancer cell lines tested, but varied significantly between individual cell lines with up to a 3 log-fold difference in the IC(50) values (IC(50) range: 0.001-11.3 micromol l(-1)). Dasatinib significantly inhibited invasion, and induced cell apoptosis, but less cell-cycle arrest. At a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for dasatinib plus carboplatin (mean CI values, range: 0.73-1.11) or paclitaxel (mean CI values, range: 0.76-1.05). In this study, 24 out of 34 (71%) representative ovarian cancer cell lines were highly sensitive to dasatinib, compared with only 8 out of 39 (21%) representative breast cancer cell lines previously reported. Cell lines with high expression of Yes, Lyn, Eph2A, caveolin-1 and 2, moesin, annexin-1, and uPA were particularly sensitive to dasatinib.ConclusionsThese data provide a clear biological rationale to test dasatinib as a single agent or in combination with chemotherapy in patients with ovarian cancer
Quasi-model-independent search for new high physics at D0
We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. We systematically analyze many exclusive final states and demonstrate sensitivity to a variety of models predicting new phenomena at the electroweak scale. No evidence of new high p_T physics is observed
- …