25 research outputs found

    Patterns of release of the secondary conidia of Claviceps africana, the sorghum ergot pathogen in Australia

    No full text
    Trials were conducted in southern Queensland, Australia between March and May 2003, 2004 and 2005 to study patterns of hourly and daily release of the secondary conidia of Claviceps africana and their relationships with weather parameters. Conidia were trapped for at least one hour on most (> 90%) days in 2003 and 2004, but only on 55% of days in 2005. Both the highest daily concentration of conidia, and the highest number of hours per day when conidia were trapped, were recorded 1-3 days after rainfall events. Although the pattern of conidial release was different every day, the highest hourly conidial concentrations occurred between 10.00 hours and 17.00 hours on 73% of all days in the three trials. Hours when conidia were trapped were characterized by higher median values of temperature, windspeed and vapour pressure deficit, lower relative humidity, and leaf wetness values of 0%, than hours when no conidia were recorded. The results indicate that fungicides need to be applied to the highly ergot-susceptible male sterile (A-) lines of sorghum in hybrid seed production blocks and breeders' nurseries as soon as possible after rainfall events to minimize ergot severity

    Effects of stem canker (Leptosphaeria maculans) and light leaf spot (Pyrenopeziza brassicae) on yield of winter oilseed rape (Brassica napus) in southern England

    Get PDF
    The relationships between yield loss and incidence or severity of stem canker and light leaf spot in winter oilseed rape were analysed by correlation and regression analyses, using data from experiments at Rothamsted, England in 1992/93, 1994/95 and 1995/96. Growth stages (GS) 6,3/6,4 and 4,0/4,5 were identified as the critical points for relating percentage yield loss to stem canker and light leaf spot (on stems), respectively. Critical point (CP) and area under disease progress curve (AUDPC) models relating percentage yield loss to combined incidence or severity of stem canker and light leaf spot (stems) in each experiment were constructed by linear regression. There were no differences in the CP models for incidence between 1992/93, 1994/95 and 1995/96 experiments, or in the AUDPC models for incidence between 1992/93 and 1994/95 experiments. Therefore, a general CP model relating percentage yield loss (Delta Y) to combined incidence of stem canker (S-i) at GS 6,3/6,4 and light leaf spot (stems) (L-i) at GS 4,0/4,5 was constructed using data from the three experiments: Delta Y = 0.85 + 0.079S(i) + 0.065L(i) (R-2 = 43.7%, P < 0.001, 92 df). A general AUDPC model relating Delta Y to the AUDPC of combined incidence of stem canker (S-ia) from GS 5.7 to GS 6.5 and light leaf spot (stems) (L-ia) from GS 4.0 to GS 6.3 was constructed using data from the 1992/93 and 1994/95 experiments: Delta Y = 0.07 + 0.00096S(ia) + 0.0026L(ia) (R-2 = 43.6%, P < 0.001, 68 df). These two general yield-loss models were tested with data from Rothamsted in 1993/94 and Boxworth in 1992/93. The predictive accuracy of the CP model based on combined incidence of stem canker and light leaf spot (stems) was better than that of the AUDPC model. Yield losses predicted by summing the estimates from individual models for incidence of stem canker alone (GS 6,3/6,4) and light leaf spot alone (on leaves at GS 3,3) were greater than observed yield losses in experiments at Rothamsted in 1992/93, 1993/94, 1994/95 and 1995/96 and at Boxworth in 1992/93.Peer reviewe

    Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria

    Get PDF
    Root-feeding herbivores can affect plant performance and the composition of natural plant communities, but there is little information about the mechanisms that control root herbivores in natural systems. This study explores the interactions between the pioneer dune grass Ammophila arenaria, arbuscular mycorrhizal fungi (AMF) and the root-feeding nematode Pratylenchus penetrans. Our objectives were to determine whether AMF can suppress nematode infection and reproduction and to explore the mechanisms of nematode control by AMF. A sequential inoculation experiment and a split-root experiment were designed to analyse the importance of plant tolerance and resistance and of direct competition between AMF and P. penetrans for the root herbivore and the plant. Root infection and multiplication of P. penetrans were significantly reduced by the native inoculum of AMF. Plant preinoculation with AMF further decreased nematode colonization and reproduction. Nematode suppression by AMF did not occur through a systemic plant response but through local mechanisms. Our results suggest that AMF are crucial for the control of root-feeding nematodes in natural systems and illustrate that locally operating mechanisms are involved in this process. [KEYWORDS: bottom-up control ; coastal dunes ; multitrophic interactions ; nematode control ; plant ; mutualists ; Pratylenchus sp. ; root-feeding nematodes]
    corecore