788 research outputs found

    Differential equations for multi-loop integrals and two-dimensional kinematics

    Full text link
    In this paper we consider multi-loop integrals appearing in MHV scattering amplitudes of planar N=4 SYM. Through particular differential operators which reduce the loop order by one, we present explicit equations for the two-loop eight-point finite diagrams which relate them to massive hexagons. After the reduction to two-dimensional kinematics, we solve them using symbol technology. The terms invisible to the symbols are found through boundary conditions coming from double soft limits. These equations are valid at all-loop order for double pentaladders and allow to solve iteratively loop integrals given lower-loop information. Comments are made about multi-leg and multi-loop integrals which can appear in this special kinematics. The main motivation of this investigation is to get a deeper understanding of these tools in this configuration, as well as for their application in general four-dimensional kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure

    On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM

    Get PDF
    We study the relationship between the momentum twistor MHV vertex expansion of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of the BCFW recursion relations. We demonstrate explicitly in several examples that the MHV vertex expressions for tree-level amplitudes and loop integrands satisfy the recursion relations. Furthermore, we introduce a rewriting of the MHV expansion in terms of sums over non-crossing partitions and show that this cyclically invariant formula satisfies the recursion relations for all numbers of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and discussion, updated references, typos fixe

    Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Get PDF
    We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes' theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the results in Mathematica forma

    New differential equations for on-shell loop integrals

    Full text link
    We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.Comment: 39 pages, 8 figures; v2: typos corrected, definition of harmonic polylogarithms adde

    The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

    Get PDF
    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral Φ~6\tilde\Phi_6 with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar mathcalN=4\\mathcal{N}=4 super-Yang-Mills theory, Ω(1)\Omega^{(1)} and Ω(2)\Omega^{(2)}. The derivative of Ω(2)\Omega^{(2)} with respect to one of the conformal invariants yields Φ~6\tilde\Phi_6, while another first-order differential operator applied to Φ~6\tilde\Phi_6 yields Ω(1)\Omega^{(1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in mathcalN=4\\mathcal{N}=4 super-Yang-Mills.Comment: 18 pages, 2 figure

    The One-Loop One-Mass Hexagon Integral in D=6 Dimensions

    Full text link
    We evaluate analytically the one-loop one-mass hexagon in six dimensions. The result is given in terms of standard polylogarithms of uniform transcendental weight three.Comment: 9 page

    Local Spacetime Physics from the Grassmannian

    Full text link
    A duality has recently been conjectured between all leading singularities of n-particle N^(k-2)MHV scattering amplitudes in N=4 SYM and the residues of a contour integral with a natural measure over the Grassmannian G(k,n). In this note we show that a simple contour deformation converts the sum of Grassmannian residues associated with the BCFW expansion of NMHV tree amplitudes to the CSW expansion of the same amplitude. We propose that for general k the same deformation yields the (k-2) parameter Risager expansion. We establish this equivalence for all MHV-bar amplitudes and show that the Risager degrees of freedom are non-trivially determined by the GL(k-2) "gauge" degrees of freedom in the Grassmannian. The Risager expansion is known to recursively construct the CSW expansion for all tree amplitudes, and given that the CSW expansion follows directly from the (super) Yang-Mills Lagrangian in light-cone gauge, this contour deformation allows us to directly see the emergence of local space-time physics from the Grassmannian.Comment: 22 pages, 13 figures; v2: minor updates, typos correcte

    Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory

    Get PDF
    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behaviour, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral \Omega^{(2)}, also plays a key role in a new representation of the remainder function R_6^{(2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) \times (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) \times (parity even) part. The second non-polylogarithmic function, the loop integral \tilde{\Omega}^{(2)}, characterizes this sector. Both \Omega^{(2)} and tilde{\Omega}^{(2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.Comment: 51 pages, 4 figures, one auxiliary file with symbols; v2 minor typo correction

    Mellin Amplitudes for Dual Conformal Integrals

    Get PDF
    Motivated by recent work on the utility of Mellin space for representing conformal correlators in AdSAdS/CFT, we study its suitability for representing dual conformal integrals of the type which appear in perturbative scattering amplitudes in super-Yang-Mills theory. We discuss Feynman-like rules for writing Mellin amplitudes for a large class of integrals in any dimension, and find explicit representations for several familiar toy integrals. However we show that the power of Mellin space is that it provides simple representations even for fully massive integrals, which except for the single case of the 4-mass box have not yet been computed by any available technology. Mellin space is also useful for exhibiting differential relations between various multi-loop integrals, and we show that certain higher-loop integrals may be written as integral operators acting on the fully massive scalar nn-gon in nn dimensions, whose Mellin amplitude is exactly 1. Our chief example is a very simple formula expressing the 6-mass double box as a single integral of the 6-mass scalar hexagon in 6 dimensions.Comment: 29+7 page

    Towards the Amplituhedron Volume

    Get PDF
    21 pages; v2: version published in JHEPIt has been recently conjectured that scattering amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. In this paper we show some interesting connections between the tree-level amplituhedron and a special class of differential equations. In particular we demonstrate how the amplituhedron volume for NMHV amplitudes is determined by these differential equations. The new formulation allows for a straightforward geometric description, without any reference to triangulations. Finally we discuss possible implications for volumes related to generic N^kMHV amplitudes.Peer reviewe
    • …
    corecore