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1 Introduction

The interplay between conceptual and technical advances has always been an important

catalyst for progress in theoretical physics. A spectacular example of this has been the

development of our understanding of N = 4 supersymmetric Yang-Mills (SYM) theory [1]

— the exemplar of four-dimensional quantum field theories — especially since the discovery

of the AdS/CFT correspondence [2] almost 15 years ago. In particular, two related aspects

of planar SYM theory which have generated considerable attention within the past several

years include the application of powerful integrability techniques [3] for determining oper-

ator dimensions and the discovery of remarkable mathematical structure in perturbative

scattering amplitudes [4].

More recently some attention has focused on the important problem of understanding

better the structure of correlation functions in SYM theory, which at strong coupling

may be computed via AdS/CFT using Witten diagrams [5]. Sometimes, both conceptual

and technical progress can be aided by ‘using the right language’ (or set of variables), as

dramatically evidenced for example by the use of spinor helicity and momentum twistor

variables for scattering amplitudes. Motivated in part by appreciation of this lesson, it has

been suggested [6] that the ‘right’ place to study AdS/CFT correlation functions is not in

position space but rather in Mellin space, the benefits of which for correlation functions in

general CFTs were pointed out in the pioneering work of Mack [7].

For the purpose of studying AdS/CFT correlation functions Mellin space is both

healthy and great tasting — it allows for a dramatic simplification of otherwise intractable

computations (see for example [8–10]), while at the same time providing a definition

for a dual bulk S-matrix via the vanishing curvature limit of the AdS/CFT correspon-

dence [6, 8, 11]. Mellin amplitudes also make the physics of correlators transparent, by

showing in a simple way their conformal block decomposition, and their associated OPE

coefficients. This is analogous to the way in which momentum space clarifies the physics

of weakly coupled field theories. It seems therefore that a strong case can be made that

Mellin amplitudes are the right object to consider in any conformally invariant setting.

Motivated by the promise of this approach, our goal in this paper is to carry out a first

study of the suitability of Mellin space as a language for the the weak-coupling expansion

of scattering amplitudes SYM theory. Let us emphasize right away that we are interested

here in the boundary flat space S-matrix, rather than the bulk S-matrix for supergravity

or string theory in the flat space limit of AdS. The latter has been studied since the

earliest days of AdS/CFT (see for example [12–14]) and may be computed as a certain

limit of SYM theory correlation functions (see [8, 15–17] for recent work). The former may

be computed at strong coupling via AdS/CFT by introducing a probe brane to provide

the gluon degrees of freedom [18], but in this paper our interest lies in the perturbative

expansion at weak coupling.

Although we consider examples of integrals which may appear in various field theories,

SYM theory is apparently unique amongst four-dimensional field theories in that in that all

of its scattering amplitudes are amenable to Mellin representations of the type we discuss

since they all possess dual conformal invariance [19–21]. This symmetry of SYM theory
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was first noticed in some examples [22] and proven to be a property of the integrand for

general amplitudes to all loop order in [23].

One of our motivations for seeking a new language for loop integrals in flat space is

that despite remarkable recent advances, actually carrying out multi-loop integrals remains

a very challenging task for which there is no practical general algorithm (see [24] and

references therein for some of the most modern magic). This stands in stark contrast

to the situation for the planar integrand of SYM theory, which is amenable to powerful

generalized unitarity techniques [25–27] and which can in principle be computed for any

desired process via the recursion described in [28] (see also [29, 30]). Given the current

relative simplicity of computing integrands but the relative difficulty of computing integrals

it is natural to wonder whether there exists some kind of ‘stepping stone’ in between these

two quantities. Initially we should not necessarily require this stepping stone to exist for

arbitrary amplitudes in any random field theory, only for the very special amplitudes of

planar SYM theory. However we should require it to be completely canonical — both the

integrand and the integrated amplitudes of SYM theory are mathematically well-defined

objects which look identical to us today as they will to an alien civilization a billion years

in the future, and the same should be true of any good stepping stone.

One important example of something halfway between an integrand and its integral,

for those integrals which can be expressed in terms of a certain class of generalized polylog-

arithm functions, is the ‘symbol’ described for example in [31–33] and first used for SYM

theory amplitudes in [34]. Symbol technology has proven very useful in several applications

(see for example [35–48]), but it appears that sufficiently complicated amplitudes even in

SYM theory involve elliptic functions (of a type familiar in the QCD literature, see for

example [49]) which are outside the class treatable by current symbol technology.

In this paper we propose that Mellin space representations of the type recently em-

ployed for AdS correlation functions might provide useful also for flat space dual confor-

mally invariant amplitudes. After quickly introducing the class of integrals under consid-

eration in section 2 and the definition of the Mellin amplitude in section 3, we explore

aspects of this proposal via several examples in the subsequent sections. In particular,

we propose in section 5 that there are simple Feynman-like rules for directly obtaining the

Mellin amplitudes corresponding to dual conformal integrals with trivial numerator factors.

These rules are considerably simpler than the ones proposed in AdS/CFT, and we show

how the former seemingly derive from the latter. In practice they amount to thinking of

the position space diagram as a diagram in Mellin momentum space; in this way internal

lines map to propagator factors and contact interactions have Mellin amplitude equal to

one. This remarkable fact has important consequences for deriving differential equations for

dual conformal integrals, and also allows one to immediately solve such equations, thereby

reducing the computation of certain higher-loop diagrams to simple integrals of one-loop

n-gon diagrams.

In sections 6 and 7 we investigate the Mellin representation of conformal integrals with

numerator factors, and in particular the pure chiral integrals studied extensively in [23].

We find several interesting features: firstly, the magic numerator factors appearing in the

chiral pentagon and hexagon integrals make some of the Mellin integrals “collapse” onto
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boundary poles. We explain how this works in detail in a simple example, and then use

this property to derive a representation of the chiral pentagon in terms of derivatives of

hypergeometric functions. Next we show how for the chiral hexagon, double numerator

factors translate into second-order differential operators in the Mellin representation. Such

differential equations have been studied in [37, 50], and our results make it clear that they

easily generalizes to more complicated examples.

We finish this paper with a short discussion, followed by various appendices containing

additional technical results and details.

2 Setting up

2.1 Dual conformal integrals in SYM theory

Here we provide a quick introduction to the important features of the integrals which

appear in SYM theory loop amplitudes. The most important property, which has been

proven to hold to all orders in perturbation theory for all amplitudes, is that the inte-

grand is invariant1 under dual conformal transformations. We remind the reader that dual

conformal transformations [21] are nothing but ordinary conformal transformations on the

dual variables x1, . . . , xn related to the momenta of the n scattering particles by

pi = xi − xi+1, xij ≡ (xi − xj)2 (2.1)

where all subscripts are taken mod n.

We take this opportunity to immediately break with the standard conventions of

the amplitude community in order to streamline the notation for this paper. Instead

of using dual variables xi which implicitly are null separated from their neighbors (i.e.

(xi−xi+1)2 = 0), we will only use as many dual variables as external faces in any diagram

under consideration, and furthermore let them initially take generic values. For example

consider the four-mass2 integral shown in figure 1. In the amplitude convention this di-

agram would be labeled with eight x’s, but since the value of the integral only depends

on the four x’s shown in (a), we can economize the notation by relabeling the diagram as

shown in (b). The value of this integral is then

=

∫
d4x

iπ2

x2
13x

2
24

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
. (2.2)

Note, importantly, the inclusion of the overall factor x2
13x

2
24 into the definition of this

integral. This factor, which is required for dual conformal invariance, is the first reminder

that the integrals under consideration here are not exactly those of scalar φ4 theory, though

in many cases they are very closely related.

1Strictly speaking it is only covariant, but it is rendered invariant after dividing by the tree-level MHV

superamplitude, which we follow standard convention in doing.
2We remind the reader unfamiliar with this terminology that the label ‘four-mass’ is used because the

sum of the external momenta entering each of the four corners of the box is non-null. There is no +m2 in

any propagator and there is no breaking the conformal (or dual conformal) symmetry of SYM theory.
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x1

x3

x5

x7

x1

x2

x3

x4

x1

x2

x3

x4

(a) (b) (c)

Figure 1. The one-loop 8-point four-mass integral, labeled according to the usual amplitude

convention in (a) and according to our streamlined notation in (b). In (a) it is implicit in the

notation that each xi should be null-separated from its neighbors xi−1 and xi+1. In contrast the xi
in (b) and (c) are arbitrary, and (a) is recovered by a simple relabeling. This integral corresponds

in the dual (Mellin momentum) space to a tree-level contact interaction (c).

(a) (b)

x1

x2

x3

x4 x2 x5

x1 x6

x3 x4

Figure 2. The two-loop four-mass double box integral (a) is a particular limit of the ‘fully massive’

double box (b), computed in Mellin space as an exchange diagram contribution to a tree-level 6-

point correlation function (in blue). The integral (a) is recovered from (b) by taking the limit

x4 → x3, x6 → x1 and then relabeling x5 → x4. We define the integral (b) to include the overall

factor x214x
2
25x

2
36 in order to provide dual conformal invariance. This reduces to the factor x413x

2
24

for integral (a).

Of course (2.2) is manifestly the same (again, up to the factor x2
13x

2
24) integral which

computes the tree-level position space CFT correlation function 〈O(x1)O(x2)O(x3)O(x4)〉
of four operators with dimension ∆ = 1 interacting via a four-point contact interaction, as

shown in figure 1(c). Henceforth we will always draw the dual diagram (c) in blue directly

on top of the corresponding integral (b) in order to save space.

In our approach it is most natural to always begin with the fully massive version of any

integral under consideration, and then to recover other versions of the integral by taking

appropriate limits. For example, the two-loop four-mass diagram shown in figure 2(a) is a

perfectly nice finite and dual conformal invariant integral, but we represent it as a limit of

the fully massive integral as shown in figure 2(b) and given by

=

∫
d4xa
iπ2

d4xb
iπ2

x2
14x

2
25x

2
36

x2
a1x

2
a2x

2
a3x

2
abx

2
b4x

2
b5x

2
b6

. (2.3)
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xi+1

xi

xj

xj+1

x

Figure 3. ‘Magic’ numerator factors are denoted graphically by a red line crossing an internal face.

The fact that fully massive integrals are often the simplest to work with in Mellin space

is one of its most attractive features, since it is opposite to the experience of amplitude-

ologists to whom more massive integrals are necessarily more complicated. For example,

while it remains an open challenge to evaluate the integral in figure 2(b) at just two loops

(it is believed to involve elliptic functions), even the L-loop generalization of the integral

in (a) was fully evaluated long ago [51] in terms of standard polylogarithm functions,

= − 1

L!λ

∑
j=L

(−1)jj! log2L−j(v/u)

(j − L)!(2L− j)!

[
Lij

(
− 1

ρu

)
− Lij(−ρv)

]
(2.4)

where

λ =
√

(1− u− v)2 − 4uv, ρ =
2

1− u− v + λ
, u =

x2
12x

2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.5)

We will see below in section 5.1 that it is trivial to write down the L-loop generalization of

the fully massive integral in figure 2(b) in Mellin space, from which (2.2) would follow as a

special case. Let us however temper our enthusiasm (slightly) by pointing out that taking

such limits of interest is often but not always a trivial task in Mellin space, as we discuss

below in section 4.3.

The correspondence between the integrals appearing in SYM theory and in φ4 theory

only holds for the simplest diagrams. General integrands in SYM theory have non-trivial

numerator factors. A particularly nice collection of such integrals are those involving chiral

numerator factors of the type discussed extensively in [28, 52]. Denoted graphically by a red

line crossing some internal face (see figure 3), the corresponding numerator factor is pro-

portional to3 the quantity (x−y)2, where y is a solution to the leading singularity equations

(y − xi)2 = (y − xi+1)2 = (y − xj)2 = (y − xj+1)2 = 0. (2.6)

For given x’s these equations have two different solutions for y; the corresponding two nu-

merator factors were denoted by squiggly and dashed red lines in [28]. The utility of these

perhaps strange-looking numerator factors is precisely that by killing one of the leading

singularities associated with the loop integration variable x they allow one to express var-

ious integrands in SYM theory very compactly (especially for example MHV amplitudes,

as those are maximally chiral).

3By convention chiral integrals are normalized so their nonzero leading singularity is 1.
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x1

x2 x3

x4

x5 x1

x4

x2

x3 x5

x6

(a) (b)

Figure 4. The chiral pentagon (a) and hexagon (b) integrals under consideration in this paper.

In this paper we will study in detail one-loop chiral integrals with one and two numer-

ator factors, two particularly simple examples of which are shown in figure 4. Here we have

drawn the pentagon with two massless corners and the hexagon with all massless corners.

We will actually begin both cases by considering an arbitrary (fully massive) one-loop n-

gon integral with one or two numerators and then take appropriate limits to reach these

two special cases. Our interest in them in particular stems from the fact that these are

the configurations in which the integrals enter one-loop MHV and NMHV amplitudes in

SYM theory [23]. In these limits the numerator factors simplify and the integrands can be

written rather simply in terms of momentum twistors [53]. For the pentagon we need at

least 8 legs to provide the 3 massive corners. For later use let us choose to label the legs

by their momentum twistor variables Zi, i = 1, . . . , 8 in this case as

1
2

3

8
7

54

6
=

∫
AB

〈AB(234) ∩ (567)〉〈3681〉
〈AB23〉〈AB34〉〈AB56〉〈AB67〉〈AB81〉

, (2.7)

while the massless hexagon is simply

1 6

3 4

2 5 =

∫
AB

〈AB13〉〈AB46〉〈5612〉〈2345〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB56〉〈AB61〉

. (2.8)

These two integrals were evaluated explicitly in [50] with the results

= Li2(1− u13) + Li2(1− u35) + Li2(1− u14)

−Li2(1− u13u35)− Li2(1− u13u14) + log(u35) log(u14), (2.9)

= Li2(1− u14) + Li2(1− u25) + Li2(1− u36) + log(u25) log(u36)− π2

3
, (2.10)
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where

uij =
x2
i,j+1x

2
i+1,j

x2
i,jx

2
i+1,j+1

. (2.11)

Since the formalism we will employ works in arbitrary dimension we will also encounter

higher dimensional integrals, including the six-dimensional scalar hexagon

d=6 =

∫
d6x

iπ3

x2
14x

2
25x

2
36

(x− x1)2(x− x2)2(x− x3)2(x− x4)2(x− x5)2(x− x6)2
. (2.12)

This integral has been evaluated in special cases including zero [36, 37], one [38] and

three [39] masses, but not yet for completely general xi (though its symbol is known [40]).

The importance of this integral for SYM theory scattering amplitudes, and its relation to

the integral (2.8) has been explored and emphasized in [37].

2.2 Ambient space formalism

The calculation of conformally invariant integrals is conveniently performed in the em-

bedding or ambient space formalism, which goes back to Dirac [54]. For a more recent

reference with several details on the four-dimensional case see [55], and for some interest-

ing recent applications to CFTs see [56, 57]. The basic idea is that we can parameterize

d-dimensional Minkowski space by projective light-cone coordinates in d + 2 dimensions.

The SO(d, 2) invariance group in d + 2 dimensions is precisely the same as the conformal

group in d dimensions. In this way conformal transformations on the coordinates of the

d-dimensional space become simple rotations of the d+ 2-dimensional coordinate vectors.

More concretely, consider null vectors in d + 2 dimensions which we will invariably

denote by capital letters P,Q, Y and so on. That these are projective null vectors means

we have

PMPM = −P+P− + PµPµ = 0, P ' λP (2.13)

where M,µ are d+ 2 and d-dimensional indices respectively.

To obtain coordinates in d-dimensional Minkowski space we need to define a refer-

ence vector, call it I, thereby explicitly breaking conformal invariance. Then the vector

P̂M = PM/(−P · I) parameterizes d-dimensional flat space. In practice we make the

convenient choice
PM

−P · I
=
√

2 (1, x2, xµ), (2.14)

where we have used light-cone coordinates for the first two entries of the vector. The above

choice is equivalent to setting −P · I =
√

2
2 P

+. By contracting two independent P vectors

we obtain

Pij ≡
(−Pi · Pj)

(−Pi · I)(−Pj · I)
= (xi − xj)2. (2.15)

In practice we will drop factors Pi ·I throughout this paper. These can always be recovered

by demanding that amplitudes should be invariant under Pi → αPi, but in any case they

always cancel out of any conformally invariant expression.
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The embedding formalism is of course well-defined in any dimension. However it is

important to notice that using null vectors for describing positions allows us to use various

spinor-helicity formalisms for particular cases. In d = 4 for instance one can use the

equivalence SO(4, 2) ' SU(4) to rewrite six-dimensional vectors PM as bi-twistors P [AB],

where A,B are SU(4) valued. Since these vectors are null, the corresponding bitwistors

are simple — that is, they can be written as a product of two SU(4) valued spinors4

PM → PAB = εαβZAαZ
B
β = Z

[A
1 Z

B]
2 , (2.16)

which establishes a map from a d-dimensional vector xµ onto a line in twistor space.

However for most of our calculations it will suffice for us to use the embedding formalism,

which has the advantage of being applicable in any dimension.

3 Definition and properties of Mellin amplitudes

In a conformal field theory the two-point function is uniquely determined (up to an irrele-

vant normalization constant) to be

〈φ∆(P1)φ∆(P2)〉 =
1

(P12)∆
. (3.1)

Two-point functions of fields with differing ∆ are identically zero. The parameter ∆ is

known as the conformal dimension of the field φ. The three-point function is also uniquely

determined by conformal symmetry up to a coupling constant,

〈φ∆1(P1)φ∆3(P2)φ∆3(P3)〉 = C∆1∆2∆3

∏
i<j

P
−δij
ij (3.2)

with δ12 = ∆1+∆2−∆3
2 , and cyclic permutations thereof. Higher-point correlation functions

are determined up to an arbitrary function of cross-ratios, which are homogeneous combi-

nations of internal products of Pi vectors. For instance, a conformally invariant four-point

function can be written in the form

〈φ∆1(P1)φ∆2(P2)φ∆3(P3)φ∆4(P4)〉 =
(P24/P14)

∆1−∆2
2 (P14/P13)

∆3−∆4
2

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

F (u, v) (3.3)

where u and v are the cross-ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (3.4)

Typically the function F (u, v) is a very complicated object. This is not unexpected,

since we know that correlation functions in position space do not usually have a simple

structure, even for weakly coupled field theories. However, in that case we know what we

should do: instead of working in position space we Fourier transform to momentum space.

There the analytic properties of the amplitude are very simple, and their physical meaning

4These are of course nothing but Hodges’ momentum twistors [53].
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is clear. At tree-level one sees simple poles corresponding to single-particle states, and

branch cuts at loop level corresponding to multi-particle exchange. For a generic conformal

field theory, the Fourier transform is not so useful. This is simply because typical CFTs

are strongly coupled, and as such we do not expect that going into a basis of approximately

free momentum eigenstates should help. Perhaps the easiest way to see this is to simply

consider the Fourier transform of the two-point function (3.1). This behaves as ' p−2(d−∆)

and so we see that even the two-point function already shows branch cuts for generic ∆.

The situation therefore might seem hopeless, but the large symmetry of conformal field

theory comes to our rescue. Following Mack [7] we introduce the Mellin amplitude M(δij)

of a conformal correlation function of scalar fields via the definition5

〈φ∆1(P1) . . . φ∆n(Pn)〉 =

∮
dδij M(δij)

∏
i<j

Γ(δij)P
−δij
ij . (3.5)

Let us look at this formula in detail. The main object in the above is M(δij), the Mellin

amplitude. We conventionally defined it such that an overall product of Γ functions always

appears, and this will be convenient later. The Mellin amplitude is a function of the

complex parameters δij which are being integrated over a suitable6 contour in the complex

plane. These parameters are symmetric in their indices, and satisfy the constraints7

δii = −∆i,
∑
j

δij = 0. (3.6)

For more precise details on the measure we refer the reader to appendix A. Overall there are
n(n−3)

2 independent parameters, and this is precisely the same as the number of independent

cross-ratios. This is not an accident, as the constraints (3.6) are precisely those of conformal

invariance. This can be seen for instance by performing an inversion on the xµi vectors,

or more simply, by demanding that under Pi → αiPi the overall amplitude scales like

α∆i
i . Upon solving the constraints, the Mellin representation becomes simply a product of

familiar one-dimensional Mellin transforms, one for each cross-ratio. In particular, contour

prescriptions are exactly the same as those for the one-dimensional transform, and the

inverse Mellin transform is simply the product of the one-dimensional inverses.8

A nice way of thinking about these δij parameters is as internal products of mo-

menta [7]. Indeed, if we parameterize the δij as

δij = ki · kj (3.7)

then the constraints (3.6) are automatically satisfied if k2
i = −∆i and

∑
i ki = 0. In

this way, one can think of a Mellin amplitude as depending on Mandelstam-like variables

5We remark that in momentum twistor language, this is a Mellin transform with respect to 4-brackets

of the form 〈i i+1 j j+1〉 ∝ x2
ij . However, from a twistor theorist’s point of view, it might be interesting

to contemplate instead a Mellin transform with respect to the variables Zi ·Wj = 〈i j−1 j j+1〉. We thank

D. Skinner for this comment.
6In all examples we consider, the integration contours may be taken parallel to the imaginary axis, with

real parts chosen so that <(δij) > 0 for all i, j.
7Note that in the literature it is common to use the equivalent constraints

∑
j 6=i δij = ∆i, δii ≡ 0.

8For sufficiently high number of legs there are ambiguities in the Mellin amplitude due to the vanishing

of Gram determinants. In practice there is no cause for alarm, but see the discussion in [16].
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built out of these momenta, each momentum being associated with a given field. The

resemblance of the δij to momenta is not an accident and we will comment on it shortly.

What have we gained by using the representation (3.5)? As it turns out we have gained

considerably. Firstly, in contrast to the complicated functional dependence of general cor-

relators in position space, Mellin amplitudes are simple meromorphic functions of their

arguments δij . Secondly, the poles are directly related to the conformal block decomposi-

tion of the correlator. Consider for instance the four-point function. Applying the OPE

decomposition in the (12) channel, Mack [7] has proven that the full Mellin amplitude (i.e.

including gamma functions) has poles in the Mandelstam variable s ≡ −(k1 + k2)2,

M(s, t) '
∑
p,n

Pn(t)C12p,nC34p,n

s− (∆p − lp)− 2n
. (3.8)

The position of the poles corresponds to the twist of the primary operators (labeled by p)

appearing in the conformal block decomposition of the correlator. The extra n summation

in the above correspond to contributions from descendants of these fields. Further, the

residues of these poles give products of the three-point couplings of the theory C12p,n, up

to a known polynomial in the remaining independent Mandelstam invariant t = (k1 +k3)2,

a polynomial of order lp, the spin of the primary field p. In this way, the Mellin amplitude

makes the physical content of a given correlation function manifest: by examining its poles

and their respective residues we can immediately determine which primary operators are

involved and what their three-point couplings are.

The Mellin amplitudes defined above are valid for any scalar conformal correlation

function. In practice, most of the work on this topic has so far focused on correlators

computed with the help of the AdS/CFT correspondence. There, passage into Mellin space

has allowed for a complete solution of the computation of tree-level correlation functions

in arbitrary scalar field theories [6, 8, 9]. One finds that there are Feynman rules for

directly evaluating the Mellin amplitude given a Witten diagram. These Feynman rules

look remarkably similar to momentum space Feynman rules, once we set δij = ki · kj . In

this note we will focus on the computation of conformal integrals in flat space, but we will

find the same structure at work. In particular, there seems to be a set of Feynman rules for

the Mellin amplitudes of these conformal integrals, and the rules are considerably simpler

than those found for AdS/CFT.

The resemblance of Mellin amplitudes to momentum space scattering amplitudes has

been understood in the context of AdS/CFT. By considering the large energy limit of

scattering in AdS, it is possible to show that the Mellin amplitude becomes precisely the

d + 1-dimensional flat-space scattering amplitude [6, 8]. This means that we expect that

there should be Feynman rules for computing the Mellin amplitude directly, and indeed

this is the case. The rules were written in a compact form in [9] and shown to obey a

BCFW-type recursion relation in [6]. These rules originally apply to the computation of

the Mellin amplitude corresponding to tree-level Witten diagrams, but it is perhaps not

too far-fetched to expect that similar rules should hold for conformal flat space integrals,

and indeed we will find this is so.
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4 Conformal integrals in Mellin space

4.1 The polygon

We begin our labors with the calculation of the polygon integral in momentum space — a

star in the dual position space. This integral is given by

In ≡ π−h
∫

ddQ

n∏
i=1

Γ(∆i)

(−Pi ·Q)∆i
. (4.1)

The integration should be understood as
∫

ddQ ≡
∫ +∞
−∞ ddx (with Q =

√
2(1, x2, xµ) as

explained in section 2.2). We have also defined the convenient shorthand

h ≡ d

2
. (4.2)

The standard way of performing such integrals is to introduce Schwinger parameters, one

per denominator factor,

In = π−h
∫ +∞

0

dti
ti
t∆i
i

∫
ddQ exp

(
Q ·
∑
i

tiPi

)
. (4.3)

The Q integral is gaussian, and we get

In =

∫ +∞

0

n∏
i=1

dti
ti
t∆i
i

(∑
i

ti

)−h
exp

(
(
∑
tiPi)

2

2
∑
ti

)
. (4.4)

Now the point is that if the original integral satisfies the conformality condition
∑n

i=1 ∆i =

d, we can drop factors of
∑
ti. A nice way to see this is to introduce a partition of unity

1 =

∫ +∞

0
dv δ

(
v −

∑
i

ti

)
. (4.5)

After a rescaling of the ti we get

In =

∫ +∞

0

dv

v
v
∑

∆i−h
∫ +∞

0

∏
i

dti
ti
t∆i
i δ

(
1−

∑
i

ti

)
exp

(
v
∑
i<j

titjPij

)
. (4.6)

If we now did the v integral we would recover the usual Feynman parameter form of the

loop integral, with the ti playing the role of Feynman parameters. Instead, we will do

another rescaling, ti → ti/
√
v and perform the v integral to get

In = 2

∫ +∞

0

∏
i

dti
ti
t∆i
i

(∑
i

ti

)∑n
i=1 ∆i−d

exp

(∑
i<j

titjPij

)
. (4.7)

We see that if the conformality condition is satisfied there is a simplification, and our

integral becomes

In = 2

∫ +∞

0

∏
i

dti
ti
t∆i
i exp

(∑
i<j

titjPij

)
. (4.8)
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To proceed we use Symanzik’s trick [58], which tells us that∫ +∞

0

∏
i

dti
ti
t∆i
i exp

(
−
∑
i<j

titjPij

)
=

1

2

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij (4.9)

with δii = −∆i,
∑

i δij = 0, as explained in appendix A. These are the same δij that we have

introduced in section 3. Recall that these constraints are solved by defining δij = ki · kj ,
with k2

i = −∆i. Going back to our integral, we finally conclude that

In =

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij . (4.10)

Comparing this expression with the definition of the Mellin amplitude (3.5), we come to

the happy conclusion that the Mellin transform in the case is simply one, M(δij) = 1.

The reader might feel somewhat cheated by this result, but despite the simplicity

of the Mellin amplitude the integral (4.10) is definitely non-trivial; after all, there are

still the factors of Γ(δij) left, which by convention we have left out of the definition of

M(δij). However, this convention is useful since all conformal integrals we shall compute

will always include the very same product of gamma functions. Their presence is related

to the existence of “double trace” operators in the conformal block decomposition of the

correlator, which always appear in such weak coupling computations.9 This means knowing

that the Mellin amplitude is one for all such conformal integrals is useful: it tells us how

to straightforwardly write down their Mellin-Barnes representation without any further

thought. In particular, the 4d box integral (2.2) is simply

= P13P24

∮
dδij

4∏
i<j

Γ(δij)P
−δij
ij , (4.11)

and similarly the fully massive n-gon integral in n dimensions is a similarly simple 1
2n(n−3)-

dimensional Mellin integral. In order to connect with previously known results from the

literature we consider in detail the cases n = 4 and n = 6 in appendices C.1 and C.2

respectively.

There is another more interesting reason why we have chosen the convention (3.5) for

defining the Mellin amplitude. This is because the fact that the Mellin amplitude as we’ve

defined it is simply a constant (in this case) is analogous to the fact that in momentum

space, non-derivative contact interactions also correspond to trivial amplitudes — they

are constants as well (up to momentum-conserving delta functions). The natural question

that arises is whether this analogy will continue to hold when we have a conformal integral

corresponding to an exchange diagram. An example of such an integral is the scalar double

box integral in 4 dimensions, which is dual to a position space 3→ 3 exchange diagram in

φ4 theory, shown in figure 2(b). It is precisely to this kind of integral that we shall consider

next, and indeed we shall find that this analogy continues to hold perfectly.

9For a discussion of these issues in AdS see for instance [59].
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4.2 Two polygons with one common edge

Let us consider then a two-loop computation. Once again we will keep our calculations

generic, and consider not a double box but rather an n-gon and an m-gon, as before, glued

together along one edge. The integral in the dual position space is now

In,m =
π−2h

2

∫
ddQ1ddQ2

n∏
i∈L

Γ(∆i)

(−Pi ·Q1)∆i

m∏
j∈R

Γ(∆j)

(−Pj ·Q1)∆j

1

(−Q1 ·Q2)δ
, (4.12)

where L,R refer to the left and right polygons. The only restriction is that both integrals

are conformal, so that
∑

i∈L ∆i + δ =
∑

i∈R ∆i + δ = d. As before we introduce Schwinger

parameters and compute the Q integrals. Conformality simplifies matters and we end

up with

In,m =
2

Γ(δ)

∫ +∞

0

∏
i

dti
ti
t∆i
i

∫ +∞

0

ds

s
sδ e(1+s2)P 2

L+2sPL·PR+P 2
R (4.13)

with PL,R =
∑

i∈L,R tiPi. Exactly as in the previous case, we use Symanzik’s formula (4.9)

to directly derive the Mellin representation from the above integral. But this time, because

of the “internal” Schwinger parameter s, which came from exponentiating the (−Q1 ·Q2)−δ

factor, we get a non-trivial Mellin amplitude

M(δij) =
1

Γ(δ)

∫ +∞

0

ds

s
sδ−

∑
i∈L,j∈R δij (1 + s2)−

∑
i<j∈L δij

=
1

Γ(δ)

∫ +∞

0

ds

s
sδ−sL(1 + s2)−

1
2

(
∑

i∈L ∆i−sL) (4.14)

with sL ≡ −(
∑

i∈L ki)
2. Performing the integral we find the simple result

M(sL) =
Γ
(
δ−sL

2

)
Γ
(
d−2δ

2

)
2 Γ(δ) Γ

(
d−δ−sL

2

) . (4.15)

To better exhibit the pole structure of the Mellin amplitude, we can write it instead as

M(sL) = −
+∞∑
n=0

(1 + δ − h)n
n!Γ(δ)

1

sL − δ − 2n
. (4.16)

This result is in precise accord with the general expectations of section 3. As predicted by

Mack, we find poles corresponding to the primary field of dimension δ being exchanged,

plus an infinite series of poles labeled by n corresponding to its descendants. The Mellin

amplitude therefore looks like precisely a momentum space scattering amplitude, in this

case an amplitude involving exchange of an infinite set of massive fields, with particular

propagator normalization factors.

We should not forget however, that at the end of the day our interest is in analyzing

the conformal integrals appearing in SYM theory scattering amplitudes. In particular, the

fully massive double box of figure 2 corresponds to setting δ = 1 and d = 4. When we do

this, the infinite sum beautifully collapses onto the single term

M(sL) =
1

1− sL
(4.17)
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Why is this so? Notice that the first argument of the Pochhammer symbol (1 + δ − h)n
vanishes if δ = h − 1 = d/2 − 1: in other words if the conformal dimension δ is that of a

free field. But for free fields we have �φ = 0, which effectively kills off the contributions

from descendant fields to the expression (4.15).

To summarize, we have found that the fully massive two-loop double box integral,

which appears to be too difficult to evaluate in position space with current methods, can

be computed by substituting

sL = −(k1 + k2 + k3)2 = 3− 2(δ12 + δ13 + δ23) (4.18)

into (4.17) and (3.5), yielding the extremely simple representation

=
1

2
P14P25P36

∮
dδij

1

δ12 + δ13 + δ23 − 1

∏
i<j

Γ(δij)P
−δij
ij (4.19)

as a Mellin integral of dimensionality 1
26(6−3) = 9. In section 5.1 we argue that this result

generalizes to higher loops in a straightforward way to provide a (2L−1)(L+1)-dimensional

Mellin representation of the fully massive L-loop ladder integral.

4.3 Massless limits of Mellin amplitudes

We have emphasized that for Mellin amplitudes it seems most natural to always begin

with the most massive version of any integral of interest. This means that all xi are

taken to be arbitrary, which from the point of view of conformal correlation functions

is the most natural thing to do. However many of the integrals appearing in scattering

amplitudes require special constraints on the kinematics — often one or more pairs of

cyclically adjacent x’s are lightlike separated from each other (x2
i,i+1 = 0), or even exactly

equal to each other (xi = xi+1). The question naturally arises then as to how one can

specialize to such cases since the definition of the Mellin amplitude (3.5) seems to break

down if any x2
ij = 0.

In many cases (including all of the examples we consider explicitly in the following

sections), taking the limit as some x2
ij → 0 can be done quite easily at the level of the

Mellin amplitude. This happens whenever the associated dδij contour integral reduces, in

the limit, to the contribution from the single pole at δij = 0. In such cases the prescription

for setting some x2
ij → 0 is therefore simply: (a) omit the factor Γ(δij)P

−δij
ij from the

product, (b) drop the integration over δij , and (c) set δij = 0 everywhere else it appears in

the integrand.

Unfortunately things are not always so simple, notably in the presence of denominator

factors such as in the result (4.19). In that example we begin with a 9-fold integral for a

quantity depending on 9 independent cross-ratios. Suppose we then want to take the limit

described in the caption of figure 2 to recover the 4-mass double box, whose value is given

explicitly by the formula (2.4) in terms of the 2 remaining cross-ratios which survive in

this limit. What happened to the other 7 cross-ratios? It is easy to check that 2 of them

go to zero in the limit. These two are simple to deal with using the rule explained in the
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previous paragraph. However, 5 of the original 9 cross-ratios go to 1 in the limit, leaving

us with a 7-fold representation for a quantity depending on only 2 cross-ratios.

Let us conclude these remarks by noting that in examples where this kind of thing

happens, typically it is possible to explicitly evaluate some of the ‘extra’ Mellin integrals

via successive applications of Barnes lemmas. For instance in the double box case one

easily reduce down to four Mellin integrals — the same number as the representation used

in [51]. Once we can no longer continue in this fashion, a possibility would be to trade

Mellin integrals for Euler integrals (i.e. some integrals from 0 to 1) by using identity (B.4),

since these might be then easier to perform explicitly.

5 Feynman rules for conformal integrals

5.1 Feynman rules in Mellin space

In the last two sections we have seen that the box and double box loop integrals have

Mellin amplitudes which are extremely simple: they are respectively 1 and 1/(1−s), where

−s is the square of the total Mellin momentum flowing through the internal propagator

in the dual exchange graph (i.e. figure 2(b)). This is in agreement with Mack’s analysis

of the Mellin amplitude, as presented in section 3. These two simple results suggest that

there might exist some simple “Feynman rules” for writing down Mellin amplitudes. As

we shortly reviewed in section 3, such rules were indeed found to exist for calculations

performed in AdS/CFT. The rules were written in a compact form in [9] and, for Mellin

amplitudes of tree-level scalar correlators in AdS, they take the form:

• For each internal line of conformal dimension ∆ in the diagram write down a propa-

gator
1

n!Γ(1 + ∆ + n− h)

1

k2 + ∆ + 2n
. (5.1)

• In g(m)φm theory10 the vertex connecting lines with dimensions ∆i is given by

V ∆i
ni

= g(m) Γ

(∑m
i=1 ∆i − 2h

2

) m∏
i=1

(1 + ∆i − h)ni

×F (m)
A

(∑n
i=1 ∆i−2h

2
, {−n1,. . .,−nm}, {1+∆1−h,. . ., 1+∆n−h}, 1, . . . , 1

)
,

with F
(m)
A one of Lauricella’s multivariable hypergeometric functions.

• The Mellin amplitude is obtained by attributing momenta to every line consistent

with momentum conservation at every vertex and summing over all ni.

Now consider taking the limit where the conformality condition
∑m

i=1 ∆i = d is satisfied,

keeping dimensions otherwise arbitrary. In this limit, the Lauricella function simplifies to

one, simplifying substantially the vertex factors. However, the overall gamma function is

10Here we really mean interactions without derivatives between arbitrary scalars e.g. φ1φ2φ3φ4, where

each field can have a different conformal dimension.
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divergent as well. If one goes through the computation in detail, one sees that these gamma

functions originally arise from the integration over the radial coordinate of AdS. When the

conformality condition is satisfied, the integral becomes divergent due to the near horizon

region. This indicates that in this limit, indeed the AdS integral is reducing to a boundary

one. To deal with this divergence one can simply absorb the divergence into the definition

of the coupling constant g(m).

Since the Lauricella function has simplified, the vertex factors take a nice factorized

form, where every line connected to it contributes a Pochhammer symbol. Therefore we

may as well associate these factors to the propagators instead of the vertices. The modified

rules become:

Vertex : ĝ(m) (5.2)

Propagator :
(1 + ∆− h)n
n!Γ (1 + ∆− h)

1

k2 + ∆ + 2n
(5.3)

We see that this is almost exactly the same as in (4.16). The difference can be explained

by different normalization conventions for propagators, and is easily ammended. With this

final modification, we are led to the strong suspicion that the conformal flat space integrals

have Mellin amplitudes described by Feynman-like rules, where to each internal line one

associates a factor as in (4.16).

Our results have direct consequences for the computation of loop integrals with dual

conformal symmetry. They imply that for diagrams which look like tree-level position

space correlators in φ4 theory, one can immediately write down the corresponding Mellin

amplitude. To reiterate the rules are:

• To every external line in the dual diagram, attribute a Mellin momentum ki, satisfying

k2
i = −1.

• Mellin momentum is conserved at each vertex.

• To every internal line attribute a propagator factor:

1

p2 + 1
(5.4)

where p is the total Mellin momentum flowing through that line.

We should emphasize that these rules only hold for tree-level graphs in the dual position

space. In the original momentum space variable, window-like diagrams would not be cap-

tured by the above set of rules. We will have more to say about this in the discussion section.

Another important point is that these rules are really only appropriate for conformal inte-

grals without nontrivial numerator factors (such as the one shown in figure 3), which so far

we have not considered. Of course many such integrals are important for the computation

of scattering amplitudes, and this does not mean that the Mellin space approach is useless

there. Rather as we will see in later sections, for cases with nontrivial numerators we will

end up with a kind of mixed representation, where the index structure of the numerators

ends up separate from the bulk of the integral, the latter being expressed in Mellin space.
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This is a somewhat unaesthetic state of affairs. Although we will not fully solve it in this

note, an attempt to remedy it is given in appendix D, where we define a generalized version

of the Mellin transform. The basic idea is to think of numerators as fields with negative

(integer) conformal dimension. With our definition, any one-loop conformal integral with

an arbitrary number of numerators has a generalized Mellin transform which is simply

equal to one. This is a promising start, and we hope to explore this further in future

work. For now let us turn to the exploration of some of the interesting consequences of the

existence of Feynman rules for the Mellin amplitude.

5.2 Consequences of the Feynman representation

We have found that the Mellin amplitude that corresponds to a tree-level diagram in

position space is given by a product of factors. For instance for diagrams in φ4 theory the

Mellin amplitude becomes a product of simple propagator-like factors. This is quite nice,

since products of Mellin amplitudes translate into convolutions of functions in position

space. A quick reminder of how this works in a one-dimensional example: suppose we have

two functions f(x), g(x) with Mellin transforms Mf (s),Mg(s). That is,

Mf (s) =

∫ +∞

0

dx

x
xs f(x), Mg(s) =

∫ +∞

0

dx

x
xs g(x). (5.5)

Then the function h(x) which corresponds to the product of the two Mellin amplitudes is

given by

h(x) =

∮
ds

2πi
Mf (s)Mg(s)x−s =

∮
ds

2πi

∫ +∞

0

dy

y
ys f(y)Mg(s)x−s

=

∫ +∞

0

dy

y
f(y)g(x/y). (5.6)

This means that we can break up the calculation of the position space functions into

convolutions of simpler functions. The integral representations one obtains in this fashion

can be thought of as solutions to certain differential equations that the original conformal

integral satisfies.

For clarity, consider for instance the double box integral of figure 2(b). We have found

that this integral can be represented in Mellin form by

I3,3 =

∮
dδij

1

1− s
∏
i<j

Γ(δij)P
−δij
ij , (5.7)

up to a prefactor irrelevant to the current discussion. Inspection of the diagram 2(b) shows

that by acting with the laplacian operator on the internal line we should reduce the integral

to something resembling a six-point star, or hexagon integral in the original momentum

variables. In Mellin space it is clear how to see this, since polygon integrals correspond

to setting the Mellin amplitude to one. Therefore we must come up with a differential

operator which cancels the propagator factor 1 − s in the above. Start by defining the

homogeneous derivative

∂̂ij = Pij
∂

∂Pij
. (5.8)
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Inside the Mellin integration sign this derivative gives −δij . Recalling (4.18) we can

then write

2

1 +
3∑
i<j

∂̂ij

[I3,3

]
= I6 =

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij . (5.9)

The conformally invariant functions

Î3,3(ui) ≡ (P14 P25 P36) I3,3,

Î6(ui) ≡ (P14 P25 P36)I6 (5.10)

depend on the same cross-ratios ui,

ui = ui,i+3, i = 1, 2, 3, (5.11)

ui+3 = ui+1,i+5, i = 1, . . . , 6 (5.12)

with the notation of equation (2.11),

uij ≡
Pi,j+1 Pi+1,j

Pij Pi+1,j+1
. (5.13)

In terms of these conformally invariant functions we can write (5.9) as

u3 ∂u3 Î3,3 =
1

2
Î6. (5.14)

Such a differential equation implies that knowing I6 should be sufficient to solve I3,3. The

way to do this is precisely by the convolution method presented above. We shall need the

position space expression corresponding to the Mellin amplitude 1/(1− s):

∮
dδij

1

1− s

6∏
i<j

(Pij)
−δij = − 1

P14 P25 P36

θ(1− u3)

2

∏
i 6=3

δ(1− ui) (5.15)

with θ(x) the step function. Putting together (5.6), (5.7) and (5.15) we can write

Î3,3(ui) = −1

2

∫ +∞

u3

du′3
u′3

Î6(u1, u2, u
′
3, . . . , u9) (5.16)

which indeed solves (5.14).

It is clear that this kind of strategy will generalize to the case of the L-loop ladder

diagram, which will have L−1 propagator factors in its Mellin amplitudes and consequently

will be able to be expressed as an (L− 1)-fold integral of the scalar 2L+ 2-gon integral. It

should also be clear that our arguments are more general, and hold not only for scalar box

integrals, but for more complicated integrals with arbitrary legs and conformal dimensions

— only the convolving function becomes slightly more complicated.
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6 The chiral pentagon

6.1 The pentagon in Mellin space

Here we consider the chiral pentagon integral shown in figure 4(a), which is a basic ingredi-

ent in all one-loop MHV amplitudes in SYM theory [23]. We start with the related integral

I1
n =

1

π2

∫
d4Q (−Q · Y )

n∏
i=1

1

(−Pi ·Q)
(6.1)

(the superscript indicates the presence of 1 numerator factor). Up to a certain normaliza-

tion factor to be fixed shortly, the chiral pentagon is clearly a particular case of the above

— it corresponds to imposing the requirements mentioned in section 2.1,

Y · Pi = 0, i = 1, . . . , 4, (6.2)

and further demanding that P12 = P34 = 0 in order to match the kinematics of figure 4(a).

To perform the integral (6.1), we introduce Schwinger parameters as usual,

I1
n = π−h

∫ n∏
i=1

dti
ti
t∆i
i

∫
d4Q (−Q · Y ) eQ·

∑
tiPi . (6.3)

The trick now is to trade the unexponentiated Q for a derivative with respect to the

argument of the exponential. The calculation then proceeds in a straightforward fashion,

and in fact it is essentially the same as for the one-loop integral without numerator which

we carried out in section 4.1.

With the conditions (6.2), the Mellin representation of the integral is then simply

I1
5 = (−Y · P5)

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij , (6.4)

with ∑
j 6=i

δij =

{
1 i 6= 5,

2 i = 5
. (6.5)

So, from the above we read off the Mellin amplitude which once again is equal to one (or,

more precisely, (−Y · P5)× 1).

The result (6.4) is valid for general chiral pentagons. A generic five-point conformal

integral depends on five arbitrary cross-ratios. We choose these as

ui ≡
Pi,i+3 Pi+1,i+2

Pi,i+2 Pi+1,i+3
, i = 1, . . . , 5 (6.6)

where cyclicity is understood. If we now specialize to the kinematics of figure 4(a) then the

only non-zero cross-ratios are u1, u3 and u4. In order to compare with (2.9) it remains only

to fix the overall normalization of (6.1) compared to (2.7), which is uniquely fixed by nor-

malizing the leading singularity to 1. This requires a little work and the nontrivial identity

〈12(345) ∩ (678)〉〈1247〉 = 〈1245〉〈1267〉〈3478〉 [1− u3 − u4 + u1u3u4] (6.7)
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(where the momentum twistors appearing inside the brackets are labeled according to (2.7))

which may be derived for example with the help of appendix A of [46].

This leads to our final expression

= P14P25P35(1− u3 − u4 + u1u3u4)

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij . (6.8)

This expression provides a simple representation of the chiral pentagon integral as a three-

dimensional Mellin integral (from the 1
25(5− 3) = 5 original δij we must set δ12 = δ34 = 0,

leaving only three integration variables — of course the i, j = 1, 2 and i, j = 3, 4 terms

are omitted from the product). It is now trivial to verify numerically that this expression

agrees precisely with (2.9), and in fact we derive it analytically in appendix C.3. However

we will see in the next section that in fact the special numerator factor leads to an easier

way to do the calculation.

6.2 Mellin magic numerators

Numerators of the type shown in figure 3 were called ‘magic numerators’ in [52]. In this

section we will see, by careful study of the factor 1 − u3 − u4 + u1u3u4 appearing in

the example (6.8), that these numerators can perform certain magic also in Mellin space.

Specifically we will see that this factor seems carefully constructed to trivialize one of the

contour integrals. After starting with the three-dimensional integral (6.8) and performing

one of the Mellin integrals we obtain

= (1− u3 − u4 + u1u3u4)

∮
dc3 dc4

(2πi)2
u−c33 u−c44 M(c3, c4),

M(c3, c4) ≡ Γ (1− c3)2 Γ (c3)2 Γ (1− c4)2 Γ (c4)2
2F1(c3, c4, 1, 1− u1). (6.9)

The c3 and c4 integrals run along the imaginary axis with a small positive real part. In

this way, for |u3| and |u4| smaller than one we can close the contour on the left and pick

up the poles at c3 = −n1 and c4 = −n2, for all n1, n2 non-negative integers.

Now take the prefactor and place it inside the contour integral. Next perform changes

of variables in c3 and c4 such that all terms come multiplied by u−c33 and u−c44 . Of course,

once we do this, the contours are not necessarily the same. However, assume for a moment

they would be. Then we are free to add up the different terms under the same integral

sign, and we get exactly zero! This means that the original integral should be equal to the

terms we have lost by the shifting of the contour. This is more clearly seen with a simple

example. Consider the integral

(1− x)

∫ ε+i∞

ε−i∞

ds

2πi
Γ (s)2 Γ (1− s)2 x−s (6.10)

with 0 < ε < 1. For 0 < |x| < 1, we close the contour on the left and pick up the poles at

s = −n, with n a non-negative integer. The result is found to be − log(x). Now let us do
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the calculation in a different way. By placing the prefactor inside the integral and doing a

change of variables we find

(1− x)

∫ ε+i∞

ε−i∞

ds

2πi
Γ (s)2 Γ (1− s)2 x−s

=

∫ ε+i∞

ε−i∞

ds

2πi
Γ (s)2 Γ (1− s)2 x−s +

∫ ε−1+i∞

ε−1−i∞

ds

2πi
Γ (1 + s)2 Γ (−s)2 x−s

= 0 +

(∫ ε−1+i∞

ε−1−i∞
−
∫ ε+i∞

ε−i∞

)(
ds

2πi
Γ (s)2 Γ (1− s)2 x−s

)
= − log(x). (6.11)

In the last step we used the fact that the contour in the last integral only encloses the

pole at s = 0. In other words, in this case the prefactor is so special that the result of the

integral becomes the residue of a single pole, as opposed to an infinite sum.

This is precisely what is going on in our more complicated example of the pentagon

integral (6.8). There we have four terms coming from the prefactor 1− u3 − u4 + u1u3u4.

Multiplication by the last three of these four terms involves shifting the contour, and just

as in our simple example we get the zero mentioned previously plus the terms coming from

the contour shift. The result is

=

{
Resc3=0

∮
dc4

2πi
u−c33 u−c44 M(c3 + 1, c4)−

−u1 Resc4=0

∮
dc3

2πi
u−c33 u−c44 M(c3 + 1, c4 + 1) + (c3 ↔ c4)

}
+

+u1 Resc3=0,c4=0 u
−c3
3 u−c44 M(c3 + 1, c4 + 1). (6.12)

Evaluating the residues leads to

Ĩ5 = log(u1) log(u3)+ log(u3) log(u4)+ log(u4) log(u1)+u1
∂2

∂α ∂β

[
2F1(α, β, 1, 1−u1)

]
α=β=1

−
∮

dc

2πi

(
u−c3 +u−c4

)
Γ (1−c)2 Γ (c)2

× d

dα

[
2F1(c, α, 1, 1−u1)−u1 2F1(1+c, α, 1, 1−u1)

]
α=1

. (6.13)

To proceed we need to evaluate the derivatives of the hypergeometric function with respect

to its parameters. Such derivatives can be easily evaluated by first using the series repre-

sentation for the hypergeometric function, taking the derivative, and performing the sum.

In this way we find

d

dα

[
2F1(c, α, 1, 1− u1)− u1 2F1(1 + c, α, 1, 1− u1)

]
α=1

=
1− u−c1

c
, (6.14)[

2F1(α, β, 1, 1− u1)
]
α=β=1

=

+∞∑
n=0

(1− u1)nH2
n =

log(u1)2 + Li2(1− u1)

u1
(6.15)

– 22 –



J
H
E
P
0
8
(
2
0
1
2
)
0
7
2

where Hn ≡
∑n

k=1 k
−1 is the n-th harmonic number. We get

Ĩ5 =

∮
dc

2πi
(u−c1 − 1)(u−c3 + u−c4 ) Γ (1− c) Γ (c)2 Γ (−c)

+ log(u1) log(u3) + log(u3) log(u4) + log(u4) log(u1) + log(u1)2 + Li2(1− u1). (6.16)

The single Mellin integral can be easily performed and we recover the well-known result

for Ĩ5 shown in (2.9).

To conclude this section, we recall that in [50] it was found that the pentagon integral

satisfies the particularly simple differential equation

u3u4∂u3∂u4I
(1)
5 = 1. (6.17)

Using the representation (6.16) it is trivial to see this. Clearly this operator annihilates the

single Mellin integral, since in it u3 and u4 appeared summed, not multiplied. The action of

the operator on the remaining terms immediately gives 1. We note that to obtain this result

it is actually not necessary to compute the derivatives of hypergeometric functions. One

can start directly from expression (6.9), apply the differential operator, and shift contours.

One gets an expression analogous to (6.12), and quite trivially one immediately obtains

one as the answer.

7 The chiral hexagon and differential operators

Now we consider the hexagon in figure 4(b). In the ambient space formalism this integral

translates into (again, up to an overall normalization factor which will be fixed below)

I2
6 =

1

2π2

∫
d4Q

(−Q · Y )(−Q · Y ′)∏6
i=1(−Pi ·Q)

(7.1)

where the special vectors Y, Y ′ satisfy

Y · Pi = 0, i = 1, . . . , 4, (7.2)

Y ′ · Pi = 0, i = 3, . . . , 6, (7.3)

and further we demand Pi,i+1 = 0 for all i. There are two possible solutions to each of the

above equations, for a total of four different integrals. However two of these are related to

the other two, leaving only two independent choices. Our focus here will be on the chiral

integral shown in in figure 4(b) and (2.8) in which both numerators are of the same type.

As always we begin with a more general n-gon integral, this time with two numerators,

I2
n =

Y A Y B

πd

∫
d4QQAQB

n∏
i=1

Γ(∆i)

(−Pi ·Q)−∆i
, (7.4)

and again we assume the conformality condition
∑n

i ∆i = d + 2, but keep all vectors

arbitrary. To do this integral we follow the same strategy as for the pentagon, obtaining:

I2
n = YAY

′
B

∮
dδij T

AB
∏
i<j

Γ(δij)P
−δij
ij (7.5)
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with

TAB ≡ ηAB +
∑
i 6=j

δij
PAi P

B
j

Pij
+
∑
i

PAi P
B
i Ŝi. (7.6)

Here we have defined Ŝi as the operator which modifies the constraints on the δij in such a

way that ∆i → ∆i + 2, keeping all other dimensions fixed. This somewhat technical point

will not be relevant for the chiral hexagon. Notice that TAB is symmetric and traceless as

it should be, due to the fact that

ηABTAB = d+ 2−
∑
i 6=j

δij = d+ 2−
n∑
i=1

∆i = 0. (7.7)

There is a very nice way of rewriting equation (7.5). To see this notice that inside the

Mellin integral, we have δij = −Pij ∂
∂Pij
≡ −∂̂ij . Therefore we can write

I2
n = YA Y

′
B

ηAB −∑
i,j

PAi P
B
j

Pij
∂̂ij +

∑
i

PAi P
B
i Ŝi

[∮ dδij
∏
i<j

Γ(δij)P
−δij
ij

]
. (7.8)

That is, the two-numerator polygon conformal integral can be written as a certain differ-

ential operator acting on the expression between square brackets. The object being acted

upon looks exactly like the polygon integral without numerators, namely (4.10). The only

catch is that for the polygon integral we have
∑n

i ∆i = d, whereas here, on account of the

original two numerators, we must have
∑n

i ∆i = d+ 2 for conformality. Therefore the ob-

ject appearing above could never arise from the computation of a d-dimensional conformal

integral. Instead it must come from a d+2-dimensional integral dependent on the same col-

lection of cross-ratios (which are largely ignorant of the dimensionality of the space they live

in).11 This is the Mellin space manifestation of the well-known connection between scalar

integrals in d+ 2 dimensions and tensor integrals in d dimensions (see for example [60]).

Let us now go back to the particular case of the chiral hexagon in d = 4. The re-

sult can be written as a particular operator acting on the hexagon integral in d = 6. The

generic integral depends on nine independent conformal cross-ratios, as introduced in equa-

tions (5.11) and (5.12). In the kinematic regime relevant to the chiral hexagon we have

Pi,i+1 = 0 for all i, and so the cross-ratios u4 through u9 actually vanish. The Mellin

representation of the integral (2.8) including all overall factors, and with the numerator

factor appearing in (7.5) and (7.6) written out explicitly in terms of momentum twistors

is given by

1 6

3 4

2 5 = P15P24P36

∮
dδij M(δij)

∏
i<j

Γ(δij)P
−δij
ij (7.9)

11They may satisfy polynomial relations known as Gram determinant constraints, but these have no effect

on any of our analysis.
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where (see appendix C.4 for details)

M(δij) = 1− 〈1345〉〈2346〉
〈1346〉〈2345〉

δ15 −
〈1356〉〈2346〉
〈1346〉〈2356〉

δ25 −
〈1246〉〈1345〉
〈1245〉〈1346〉

δ14 −
〈1246〉〈1356〉
〈1256〉〈1346〉

δ24

(7.10)

and of the 1
26(6− 3) = 9, the six of the form δi,i+1 are set to zero (and the corresponding

terms omitted from the product), leaving only three independent integration variables. We

have checked numerically that the expression (7.9) agrees precisely with (2.10).

Alternatively, we can also derive the differential operator form of the chiral hexagon.

Since the integral (7.1) is conformally invariant, we can trade derivatives with respect to

Pij by derivatives with respect to cross-ratios, and in the end we obtain

1 6

3 4

2 5 =
(
u2(1−u1−u3)+u2(1−u1)u1∂̂u1

+u2(1−u3)u3∂u3−(1−u2)(1−u1−u3)u2∂u2

)
I6(u1, u2, u3) (7.11)

where the zero-mass d = 6 hexagon

I6(u1, u2, u3) ≡ (P14 P25 P36 I6)u4=...=u9=0 (7.12)

has been given explicitly12 in [38] (but see also appendix C.2). Of course, this particular

differential equation relating the chiral two-numerator hexagon in 4d to the massless scalar

hexagon in 6d is very well-known [50] (and see also [37] for further applications).

8 Conclusion and discussion

Motivated by the success of Mellin representations [7] for studying correlation functions

in general CFTs and in particular in AdS/CFT, we have here initiated a preliminary

investigation of the suitability of using Mellin representations for dual conformal integrals

of the type appearing in SYM theory scattering amplitudes.13 We have explored this

possibility by working out explicit, and very simple, Mellin amplitudes for several particular

integrals. In those cases for which results are available in the literature, including the

four-mass box, the four-mass double box, and the chiral pentagon and hexagons, we have

checked agreement (either analytically or numerically) between these results and our Mellin

representations. Beyond this, we have seen how simple it is to write Mellin representations

for large classes of integrals which seem far beyond the ability to evaluate in u-space with

currently available methods. Examples of this include the fully massive L-loop ladder

diagram, or even the fully massive one-loop n-gon integral in n dimensions,14 whose Mellin

representation, when normalized according to the standard convention (3.5), is just 1!

12Regrettably, the notations of [38] and [23] are inconsistent. We stick with the latter, so Del Duca et

al’s u1, u2, u3 are our u2, u3, u1 respectively.
13As opposed to more general Mellin-Barnes representations, which are a general tool for a much wider

class of Feynman integrals.
14For even n, an explicit formula for the symbol of this integral is given in [40], however the fully massive

version of the integral has not yet been evaluated for any n > 4.
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Figure 5. The simplest example of a dual conformal ‘window’ diagram (black) whose dual diagram

(blue) has a loop in x-space. Here we have shown the fully massive version of the integral; the fully

massless version contributes to the four-loop four-particle MHV amplitude in SYM theory.

This was made possible by introducing a set of Feynman rules for conformal inte-

grals, and showing how they can be interpreted as arising from the Feynman rules found

in [6, 9] for AdS correlation functions. Unfortunately, this analogy with momentum space

amplitudes does not hold at the quantum level, which is to say whenever there are loops

in x-space (window-like diagrams in the original momentum space, see figure 5). This is

because as we saw in section 3, the Mellin amplitude can have only simple poles, whereas

momentum space loops have branch cuts. Of course this doesn’t mean that there aren’t

some simple rules for writing down Mellin amplitudes involving x-space loops — indeed it

is extremely likely those must exist — it is just that they have yet to be worked out in

detail. For some work along this direction in the context of AdS computations see [8, 16].

It would be particularly interesting to work out if there exist similar diagrammatic

rules for integrals involving general numerators of the type reviewed in section 2.1. In the

examples we have studied we have seen that for integrals with only a single numerator,

the numerator of the Mellin representation is just a constant prefactor (independent of

the integration variables δij), while for integrals with more than one numerator factor a

non-trivial numerator can appear such as in (7.9). Because these numerator factors depend

explicitly on cross-ratios, these Mellin amplitudes are not literally the same thing one would

obtain if one computed the inverse Mellin transform of the integral’s u-space answer. Rather

they are some kind of hybrid representation (akin to writing a function of x as a Fourier

transform of something which depends on k but also explicitly on x). This is not necessarily

a bad thing; if for example there are simple and physically well-motivated general rules for

writing such hybrid representations, then we are all for it. Alternatively, the generalized

Mellin transform introduced in appendix D might also be a natural object to consider.

A particularly important role is played by the one-loop scalar n-dimensional n-gon

integral, whose Mellin amplitude is exactly 1 (in the normalization which is now standard

in the AdS/CFT literature). We have seen in the concrete example of the chiral hexagon

how the numerator factors transform into certain differential operators acting on these

simpler integrals. Generically, the statement is that a d-dimensional conformal integral

containing an even number 2n of numerators can always be rewritten as an operator acting

on the same conformal integral without numerators in a higher dimension. This operator

contains up to n derivatives with respect to the Pij , and in turn these will transform
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into derivatives with respect to cross-ratios. In this way Mellin space allows for an easy

deduction of differential relations amongst multi-loop integrals.

Going in the other direction, we have shown that certain higher-loop integrals with

trivial numerator factors may be written as integral operators acting on the n-gon. Our

chief example is a formula for the 6-mass two-loop double box integral as a very simple

integral of the 6-mass scalar hexagon in six dimensions,

(u, . . .) = −1

2

∫ +∞

u

du′

u′
d=6 (u′, . . .) (8.1)

where u = x2
13x

2
46/(x

2
14x

2
36), found in section 5.2. Here the diagrams on the left- and

right-hand sides are each functions of 9 cross-ratios, eight of which (represented by . . .) are

identified on both sides. It is only the appearance of one preferred u which breaks the cyclic

symmetry of the hexagon integral. Again we emphasize that explicit formulas in u-space

are currently not known for either diagram, but the double box integral on the left does

appear in two-loop SYM theory scattering amplitudes. This formula clearly generalizes to

one which expresses the fully massive L-loop ladder diagram as an L − 1-fold integral of

the fully massive scalar 2L+ 2-gon.

Another natural arena in which to explore these methods is in the context of the chi-

ral double pentagon integral, which was evaluated in [44] as an ingredient in the analytic

formula for the two-loop 6-point NMHV amplitude presented in that paper. It satisfies

known differential equations relating it to both the chiral hexagon and the six-dimensional

scalar hexagon [37, 50], which manifest themselves very simply in Mellin space. Based

on our analysis we expect that it should also be possible to express the double pentagon

as a first-order differential operator acting on a single integral of the 8-dimensional oc-

tagon. This relation is especially interesting in light of the special role played by a set of

chiral octagon integrals [23] which provide a basis for one-loop integrands and have been

evaluated analytically. These chiral octagons should themselves be expressible as certain

differential operators acting on the 8-dimensional octagon. This suggests a possible link

between the double pentagon integral and these chiral octagons, which would surely be

worth further investigagion.

To summarize, it is clearly important to better understand the structure of the scalar

n-gon integral in n dimensions, whose Mellin amplitude is just 1. These integrals are

particularly beautiful objects in and of themselves, as they capture volumes of polyhedra

in hyperbolic space [61, 62]. Since all numerator factors in a general integral can be written

as differential operators acting on this object, and all denominator factors can be written as

integral operators acting on this object, we believe that all (at least, all non-window) dual

conformal integrals relevant to SYM theory can be written as integro-differential operators

acting on the scalar n-dimensional n-gon.

On a different note, it would be very interesting to understand, for those integrals

which can be expressed in terms of generalized polylogarithm functions, if there is a simple

way to read off the symbol of an integral directly from its Mellin representation (or even to
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be able to look at a Mellin representation and quickly determine what degree of transcen-

dentality, if any, the resulting integral has). Presumably, if there is a way to determine this

it will be by careful examination of the arguments of the gamma functions which appear

generically in any Mellin transform. Indeed, (poly)logarithms can only arise from sums

of double or higher order poles in the Mellin amplitude. A first step would surely be to

understand the n-dimensional scalar n-gon integrals, which have Mellin transform 1 but a

very nontrivial symbol [40].

Keeping our wildest speculation for the very end, it is perhaps our greatest hope

that it might be possible to find a recursion relation which works directly at the level of

Mellin representations for multi-loop amplitudes in SYM theory, akin to the BCFW-type

recursion relation which is known to hold at the level of the integrand [28–30]. If this hope

was realized, and one could generate Mellin representations for arbitrary amplitudes ‘at the

touch of a button’, then our suggestion that Mellin space might serve as a useful stepping

stone between integrands and integrals would be fully realized.

A The Symanzik star formula

For completeness, in this section we review the Symanzik star integration formula in Eu-

clidean space as discussed in [7]. For a proof and more details we refer the reader to the

original reference [58]. Consider a set of n points in Euclidean space xi and their differences

xi − xj . In the embedding formalism we have Pij ≡ −Pi · Pj = (xi − xj)2. Symanzik’s

formula is then∫ +∞

0

(
n∏
i=1

dti
ti
t∆i
i

)
e−(

∑
1≤i<j≤ntitj Pij) =

1

2

∮
dδij

∏
1≤i<j≤n

Γ(δij)P
−δij
ij . (A.1)

This identity can be deduced by using the Cahen-Mellin integral e−x =
∫

ds
2πi Γ(s)x−s for

each factor exp(titjQij) and performing the Schwinger parameter integrals. The integration

measure on the right-hand side is more precisely given by∮
dδij = 2

∫ +i∞

−i∞

∏
1≤i<j≤n

dδij

n∏
i=1

δ

(
∆i −

∑
j 6=i

δij

)
. (A.2)

We have included the factor of two since in the majority of cases one solves for a subset of

the δij as independent variables, and in that case it is easy to see that a factor of 1/2 arises

from the Jacobian coming from the delta functions. Of course, more general choices are

possible. To see this, first notice that the Dirac delta functions imply constraints on the δij :∑
i 6=j

δij = ∆j ≡ −δii (A.3)

for all i. Now pick a particular solution of the set of equations (A.3), δ0
ij . Then we write

δij = δ0
ij +

1
2
n(n−3)∑
k=1

cij,ksk (A.4)
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with

cii,k = 0,
∑
j 6=i

cij,k = 0. (A.5)

Choosing as independent variables the
(

1
2n(n− 3)

)2
coefficients cij,k with 2 ≤ i < j ≤ n

(with the exception of c23,k), with the further restriction |det cij,k| = 1, we can write

∫
dδij → 2

∫ +i∞

−i∞

1
2
n(n−3)∏
k=1

dsk
2πi

. (A.6)

The integration paths are chosen parallel to the imaginary axis, with real parts such that

the real parts of the arguments of the gamma functions are positive.

B Useful hypergeometric function identities

In the appendices we show how one can (sometimes) easily go from the Mellin representa-

tion to position space. We will be using the following basic identities

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt

t(1− t)
tb(1− t)c−b(1− tz)−a, (B.1)

2F1(a, b, c, z) =

∮
ds

2πi

Γ(c)Γ(s)Γ(c− a− b+ s)Γ(a− s)Γ(b− s)
Γ(a)Γ(b)Γ(c− a)Γ(c− b)

(1− z)−s, (B.2)

2F1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∮
ds

2πi

Γ(s)Γ(a− s)Γ(b− s)
Γ(c− s)

(−z)−s. (B.3)

From the first two equations above we also get the useful relation∮
ds

2πi
Γ(a1 + s)Γ(a2 + s)Γ(b1 − s)Γ(b2 − s) z−s

= Γ(a1 + b1)Γ(a2 + b2)

∫ 1

0

dt

t(1− t)
tb2+a1(1− t)a2+b1 [1− t(1− z)]−b1−a1 . (B.4)

which allows to go from a Mellin-type integral to an Euler-type one.

C Selected details

C.1 The general box integral

The box integral is written in Mellin form as

I4 ≡
∮

dδij

4∏
i<j

Γ(δij)P
−δij
ij . (C.1)

Defining the cross-ratios

u ≡ P12 P34

P13 P24
v ≡ P14 P23

P13 P24
(C.2)

and the quantities

∆+
ij ≡

∆i + ∆j

2
, ∆−ij ≡

∆i −∆j

2
, (C.3)
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the integral becomes

I4 =
1

(−2P12)∆+
12 (−2P34)∆+

34

(
P24

P14

)∆−12
(
P14

P13

)∆−34

f4(u, v) (C.4)

with

f4(u, v) ≡
∮

ds dt

(2πi)2
Γ(∆+

12 + s)Γ(∆+
34 + s)Γ(−∆−12 − s− t)Γ(∆−34 − s− t)

× Γ(t)Γ(∆−12 −∆−34 + t)u−s v−t.

Using the integral representations for the hypergeometric function it is straightforward

to obtain

f4(u, v) =
Γ(∆+

12−∆−12) Γ(∆+
12−∆−34) Γ(∆+

34+∆−12) Γ(∆+
34+∆−34)

Γ(∆+
12+∆+

34)

∫ 1

0

dt

t(1−t)
(1−t)∆+

34−∆−12

× t∆
+
12+∆−34 (1−t(1−u))−∆+

12+∆−12 2F1

(
∆+

12−∆−12,∆
+
34+∆−34,∆

+
12+∆+

34, 1−
(1−t) t v

1−t(1−u)

)
.

The above integral can be done in terms of Appell F4 functions, but we will not do so here.

Instead, we specialize to the case of equal conformal dimensions, ∆i = n. Then we obtain

f4(u, v) → Γ(n)4

Γ(2n)

∫ 1

0

dt

t(1− t)

(
t (1− t)

1− t(1− u1)

)n
2F1

(
n, n, 2n, 1− (1− t) t v

1− t(1− u)

)
=

Γ(n)4

Γ(2n)

∫ 1

0

dt

t(1− t)
v−n 2F1

(
n, n, 2n, 1− 1− t(1− u)

t(1− t)v

)
. (C.5)

The case relevant for d = 4 is n = 1, whereupon the integral reduces to

∫ 1

0
dt

log
(

1−t(1−u)
vt(1−t)

)
1− t(1− u)− v t(1− t)

. (C.6)

It is now a straightforward matter to integrate this expression to obtain the final result (2.4).

C.2 The six-dimensional one-mass hexagon

In this section we derive a simple Mellin-Barnes representation for the hexagon integral

in 6 dimensions. The Mellin amplitude is one, and so the integral which we denote I6 is

given by

I6 =

∮
dδij

∏
i<j

Γ(δij)P
−δij
ij (C.7)

By conformality, up to some prefactor, the six-point integral can depend only on 6×3/2 = 9

cross-ratios ui. In the notation of (2.11) we take these to be given by

ui = ui,i+3, i = 1, 2, 3 (C.8)

ui+3 = ui+1,i+5, i = 1, . . . , 6. (C.9)

Accordingly the constraints on δij can be solved for nine independent variables which we

denote by ci. There are many possible choices for which variables to choose, and this
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corresponds to shifting the function of cross-ratios by some monomial in the cross-ratios.

One particular choice leads to

Î6 ≡ (P14P25P36) I6 =

∮ 9∏
i=1

dci
2πi

u−cii

(
9∏
i=4

Γ(ci)

)
Γ(c1 − c5 − c6)Γ(c2 − c6 − c7)

×Γ(1− c1 − c3 + c5 + c8) Γ(c3 − c7 − c8) Γ(c1 − c8 − c9) Γ(1− c1 − c2 + c6 + c9)

×Γ(1− c2 − c3 + c4 + c7) Γ(c3 − c4 − c5) Γ(c2 − c4 − c9), (C.10)

To proceed we will focus on a specific kinematic regime, corresponding to the one-mass

case. In this limit all cross-ratios except u1, u2, u3 and u4 vanish. The corresponding Mellin

integrals become trivial, as one simply picks up one residue for each of the cross-ratios.

The integral becomes

Î6 =−
∮ ( 4∏

i=1

dci
2πi

u−cii

)
Γ(c1)2 Γ(c2)Γ(c3)Γ(c4) Γ(1− c1 − c2)

× Γ(1− c1 − c3) Γ(c2 − c4) Γ(c3 − c4)Γ(1− c2 − c3 + c4).

By making good use of the identities of section B we can simplify this to

Î6 = −
∮

dc2 dc3

(2πi)2
u−c22 u−c33

Γ(1− c2)3 Γ(c2)2 Γ(1− c3)3Γ(c3)2

Γ(2− c2 − c3)

×2 F1 (1−c2, 1−c3, 2−c2−c3, 1−u1) 2F1 (c2, c3, 1, 1− u4) .

This provides an efficient numerical representation for the integral. Of course nothing

stops us from trading the Mellin-Barnes integrals for Euler integrals. This can be done

for instance by using the Euler representation of the two hypergeometric functions and

performing the Mellin-Barnes integrals. This leads to the alternative representation

Î6 =

∫ 1

0
ds dt

log
(

1−s(1−u1)
(1−s)(1−t(1−u4))u2

)
(
su1 + (1− s)[1− (1− t(1− u4))u2]

)(
(1− t)s u3 + t

) . (C.11)

We have checked that this agrees numerically with the exact analytical result of refer-

ence [38], which was denoted there by I6,m In doing the comparison note that our cross-

ratios correspond to the ones in that reference after we change variables such that

Î6(u1, u2, u3, u4) = I6,m(u2, u3, u1, u4). (C.12)

C.3 The chiral pentagon

There are five Mellin integrals in the expression for I5. After solving the constraints on the

δij we find we can write

I5 =
(−Y · P5)

P25 P14 P35

∮ 5∏
i=1

(
dci
(2πi

uci−1
i Γ(1− ci)

)
Γ (c1 + c2 − c4 − 1)

× Γ (c3 + c4 − c1) Γ (c2 + c3 − c5) Γ (c1 + c5 − c3 − 1) Γ (c4 + c5 − c2)
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with the cross-ratios

ui = ui,i+2 =
Pi,i+3 Pi+1,i+2

Pi,i+2 Pi+1,i+3
, i = 1, . . . , 5. (C.13)

We are interested in evaluating the Mellin integrals for the particular kinematics corre-

sponding to P12 = P34 = 0 (as in figure 4(a)), which implies u2 = u5 = 0. In this limit we

simply pick up the residues at c2 = c5 = 1, obtaining∮
dc1dc3dc4

(2πi)3
uc1−1

1 uc3−1
3 uc4−1

4 Γ (1− c1) Γ (1− c3) Γ (1− c4)

Γ (c1 − c3) Γ (c3) Γ (c1 − c4) Γ (c4) Γ (c3 + c4 − c1) .

Now we perform the c1 integral using the identity (B.2), to get∮
dc3dc4

(2πi)2
uc3−1

3 uc4−1
4 Γ (1− c3)2 Γ (c3)2 Γ (1− c4)2 Γ (c4)2

2F1(1− c3, 1− c4, 1, 1− u1).

By further using the representation (B.1) for the hypergeometric function, the c3 and c4

integrals can also be performed, finally giving∫ 1

0
dt

log (u3[1− t(1− u1)])

(1− u3[1− t(1− u1)]) (u4(1− t) + t)
=

1

1− u3 − u4 + u1u3u4

[
log(u1) log

(
1− u1

1− u1u4

)
− log(u3) log(u4)− Li2(1− u3)

+ Li2(1− u1u3)− Li2

(
1− u4

1− u1u4

)
+ Li2

(
u1(1− u4)

1− u1u4

)]
. (C.14)

One can check numerically that the expression between brackets is exactly (2.9), and that

the prefactor in front of the expression in square brackets is exactly the appropriate relative

normalization factor appearing as the overall factor in (6.8).

C.4 The Mellin numerator of the chiral hexagon

Here we provide some details on the derivation of the Mellin numerator (7.10) for the chiral

hexagon integral. We begin by solving the constraints (7.2), which in x-coordinates read

(y − xi)2 = 0, i = 1, 2, 3, 4, (C.15)

(y′ − xi)2 = 0, i = 3, 4, 5, 6. (C.16)

Details on solving this kind of problem in general may be found in [23]. There are two

solutions for each of y and y′:

y = (13) or (612) ∩ (234), (C.17)

y′ = (46) or (345) ∩ (561), (C.18)

where we express the 4-dimensional vectors as antisymmetric products of momentum

twistors as in (2.16), labeling the legs and faces of the hexagon as shown in (2.8) and

figure 4(b) respectively. Amongst the four choices of {y, y′} two pairs are related by parity.
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The chiral hexagon we are interested in corresponds to choosing the same type of solution

for each numerator, so we will proceed with

y = (612) ∩ (234), y′ = (345) ∩ (561). (C.19)

Now we turn our attention to the relevant portion of the prefactor in (7.8), which we

can write as

(y − y′)2

1−
∑
i,j

(y − xi)2(y′ − xj)2

(y − y′)2(xi − xj)2
δij

 . (C.20)

Only four of the cross-ratios appearing in the sum are nonzero, and those are easily com-

puted using (C.19), which gives exactly (7.10) together with the overall factor

(y − y′)2 = 〈1256〉〈1346〉〈2345〉 = (−P15)(+P36)(−P24) (C.21)

appearing in (7.9). It may be of interest to note that two of these cross-ratios can be

written easily in terms of the standard ui defined in (5.11) and (2.11):

〈1356〉〈2346〉
〈1346〉〈2356〉

= 1− u3,
〈1246〉〈1345〉
〈1245〉〈1346〉

= 1− u1. (C.22)

The other two cross-ratios (the first and fourth in (7.10)) are the two roots of the

quadratic equation

u2x
2 − (1− u1 + u2 − u3)x+ (1− u1 − u3 + u1u3) = 0. (C.23)

D A generalized Mellin transform

Suppose one wants to compute an integral with a general numerator structure of the form

IN,M ≡
∏N
i=1 Γ(∆i)

πh
∏M
a=1ma!

∫
ddQ

∏M
a=1(Q · Ya)ma∏N
i=1(Q · Pi)∆i

. (D.1)

The trick is to introduce Schwinger parameters for the denominators and complex integrals

for numerators,

IN,M =
1

πh

∫
ddQ

∫ +∞

0

N∏
i=1

dti
ti
t∆i
i

∮ M∏
a=1

dza
(2πi)

z−1−ma
a exp

[
Q ·
(∑

i

tiPi+
∑
a

zaYa

)]
. (D.2)

The integral in Q is then simply performed. Conformality makes annoying factors of∑
ti +

∑
zj drop out. The net result is that we get

IN,M = 2

∫ +∞

0

N∏
i=1

dti
ti
t∆i
i

∮ M∏
j=1

dzj
(2πi)

z−1−ma
j exp

[(∑
i

tiPi +
∑
j

zjYj

)2]
. (D.3)

Now we do Symanzik’s trick, slightly generalized. We slice up the Pij exponentials and

introduce Mellin integrations δij for each of them, as in appendix A. For the cross terms

tizaPi · Ya and for zazbYaYb we substitute the exponentials by their series representation,
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introducing sums over integers qia and nab. Notice that the parameter qij has indices

running over different ranges. The integration over the t′s gives Dirac deltas imposing

constraints on δij Mellin parameters; the complex zi integrations give Kronecker deltas

imposing constraints on the nab parameters and we get

IN,M =
∑
nab,qia

∮
dδij

N∏
i<j

Γ(δij) (Pi · Pj)−δij
M∏
a<b

1

nab!
(Ya · Yb)nab

∏
i,a

1

qia!
(Pi · Ya)qia . (D.4)

The sums and the integral satisfy the constraints∑
j 6=i

δij −
∑
a

qia = ∆i, (D.5)

∑
b 6=a

nab +
∑
i

qia = ma. (D.6)

This example suggests it is natural to introduce a generalized Mellin transform for any

conformal integral, by simply adding a general function M(δij , qia, nab) in the integrand

above. The generalized Mellin amplitude of any of the conformal integrals IN,M is one.

With similar calculations it is not too hard to show that the Mellin amplitude of an exchange

integral is a simple pole, but the location of the pole depends on the quantities nab and qia.

In other words, everything works out as if we could attribute negative conformal dimensions

to numerator factors.
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