Motivated by recent work on the utility of Mellin space for representing
conformal correlators in AdS/CFT, we study its suitability for representing
dual conformal integrals of the type which appear in perturbative scattering
amplitudes in super-Yang-Mills theory. We discuss Feynman-like rules for
writing Mellin amplitudes for a large class of integrals in any dimension, and
find explicit representations for several familiar toy integrals. However we
show that the power of Mellin space is that it provides simple representations
even for fully massive integrals, which except for the single case of the
4-mass box have not yet been computed by any available technology. Mellin space
is also useful for exhibiting differential relations between various multi-loop
integrals, and we show that certain higher-loop integrals may be written as
integral operators acting on the fully massive scalar n-gon in n
dimensions, whose Mellin amplitude is exactly 1. Our chief example is a very
simple formula expressing the 6-mass double box as a single integral of the
6-mass scalar hexagon in 6 dimensions.Comment: 29+7 page