178 research outputs found

    Non-steroidal anti-inflammatory drug-induced apoptosis in gastric cancer cells is blocked by protein kinase C activation through inhibition of c-myc

    Get PDF
    Apoptosis plays a major role in gastrointestinal epithelial cell turnover, ulcerogenesis and tumorigenesis. We have examined apoptosis induction by non-steroidal anti-inflammatory drugs (NSAIDs) in human gastric (AGS) cancer cells and the role of protein kinase C (PKC) and apoptosis-related oncogenes. After treatment with aspirin or indomethacin, cell growth was quantified by MTT assay, and apoptosis was determined by acridine orange staining, DNA fragmentation and flow cytometry. The mRNA and protein of p53, p21waf1/cip1 and c-myc was detected by Northern and Western blotting respectively. The influence of PKC on indomethacin-induced apoptosis was determined by co-incubation of 12-O-tetradecanoylphorbol 13-acetate (TPA). The role of c-myc was determined using its antisense oligonucleotides. The results showed that both aspirin and indomethacin inhibited cell growth and induced apoptosis of AGS cells in a dose- and time-dependent manner, without altering the cell cycle. Indomethacin increased c-myc mRNA and protein, whereas p53 and p21waf1/cip1 were unchanged. Down-regulation of c-myc by its antisense oligonucleotides reduced apoptosis induction by indomethacin. TPA could inhibit indomethacin-induced apoptosis and accumulate cells in G2/M. Overexpression of c-myc was inhibited by TPA and p21waf1/cip1 mRNA increased. In conclusion, NSAIDs induce apoptosis in gastric cancer cells which may be mediated by up-regulation of c-myc proto-oncogene. PKC activation can abrogate the effects of NSAIDs by decreasing c-myc expression. © 1999 Cancer Research Campaig

    Increasing Clinical Virulence in Two Decades of the Italian HIV Epidemic

    Get PDF
    The recent origin and great evolutionary potential of HIV imply that the virulence of the virus might still be changing, which could greatly affect the future of the pandemic. However, previous studies of time trends of HIV virulence have yielded conflicting results. Here we used an established methodology to assess time trends in the severity (virulence) of untreated HIV infections in a large Italian cohort. We characterized clinical virulence by the decline slope of the CD4 count (n = 1423 patients) and the viral setpoint (n = 785 patients) in untreated patients with sufficient data points. We used linear regression models to detect correlations between the date of diagnosis (ranging 1984–2006) and the virulence markers, controlling for gender, exposure category, age, and CD4 count at entry. The decline slope of the CD4 count and the viral setpoint displayed highly significant correlation with the date of diagnosis pointing in the direction of increasing virulence. A detailed analysis of riskgroups revealed that the epidemics of intravenous drug users started with an apparently less virulent virus, but experienced the strongest trend towards steeper CD4 decline among the major exposure categories. While our study did not allow us to exclude the effect of potential time trends in host factors, our findings are consistent with the hypothesis of increasing HIV virulence. Importantly, the use of an established methodology allowed for a comparison with earlier results, which confirmed that genuine differences exist in the time trends of HIV virulence between different epidemics. We thus conclude that there is not a single global trend of HIV virulence, and results obtained in one epidemic cannot be extrapolated to others. Comparison of discordant patterns between riskgroups and epidemics hints at a converging trend, which might indicate that an optimal level of virulence might exist for the virus

    Linagliptin Improves Insulin Sensitivity and Hepatic Steatosis in Diet-Induced Obesity

    Get PDF
    Linagliptin (tradjenta™) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3–4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67–89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (–16.5% to –20.3%; P<0.01) or 30 mg/kg/day (–14.5% to –26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic–hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity

    Inhibition of p38 MAPK Suppresses Inflammatory Cytokine Induction by Etoposide, 5-Fluorouracil, and Doxorubicin without Affecting Tumoricidal Activity

    Get PDF
    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often experience debilitating fatigue similar to sickness behavior, a normal response to infection or tissue damage caused by the production of the inflammatory cytokines IL-1β, TNF-α, and IL-6. The p38 mitogen activated protein kinase (p38 MAPK) plays a central role in the production of these cytokines and consequently the development of sickness behavior. Targeted inhibitors of p38 MAPK can reduce systemic inflammatory cytokine production and the development of sickness behavior. Several systemic cancer chemotherapy drugs have been shown to stimulate inflammatory cytokine production, yet whether this response is related to a common ability to activate p38 MAPK is not known and is the focus of this study. This understanding may present the possibility of using p38 MAPK inhibitors to reduce chemotherapy-induced inflammatory cytokine production and consequently treatment-related fatigue. One caveat of this approach is a potential reduction in chemotherapeutic efficacy as some believe that p38 MAPK activity is required for chemotherapy-induced cytotoxicity of tumor cells. The purpose of this study was to demonstrate proof of principal that p38 MAPK inhibition can block chemotherapy- induced inflammatory cytokine production without inhibiting drug-induced cytotoxicity using murine peritoneal macrophages and Lewis Lung Carcinoma (LLC1) cells as model cell systems. Using these cells we assessed the requirement of etoposide, doxorubicin, 5-flourouracil, and docetaxel for p38 MAPK in inflammatory cytokine production and cytotoxicity. Study findings demonstrate that clinically relevant doses of etoposide, doxorubicin, and 5-FU activated p38 MAPK in both macrophages and LLC1 cells. In contrast, docetaxel failed to activate p38 MAPK in either cell type. Activation of p38 MAPK mediated the drug's effects on inflammatory cytokine production in macrophages but not LLC1 cytotoxicity and this was confirmed with inhibitor studies

    Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability

    Get PDF
    Abstract The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD

    In vitro radiosensitivity of tumour cells and fibroblasts derived from head and neck carcinomas: mutual relationship and correlation with clinical data

    Get PDF
    The aim was to characterize the variation in the cellular in vitro radiosensitivities in squamous cell carcinomas of the head and neck, and to test for a possible correlation between different measures of radiosensitivity and the clinical and histopathological data. Cellular in vitro radiosensitivities were assessed in tumour biopsies from 71 patients using the modified Courtenay–Mills soft agar clonogenic assay combined with an immunocytochemical analysis. Radiosensitivity was quantified as the surviving fraction after a radiation dose of 2 Gy irrespective of cell type (overall SF2), or based on identification of cell type (tumour cell SF2, fibroblast SF2). Sixty-three biopsies were from primary tumours, and eight were from recurrences. Overall plating efficiency ranged from 0.005 to 1.60% with a median of 0.052%. The majority of the colonies obtained from the biopsies were fibroblast marker-positive; the proportion of tumour marker-positive colonies ranged from 1 to 88% with a median of 15%. The median overall SF2 was 0.47 (range 0.24–0.96), the median tumour cell SF2 was 0.50 (range 0.11–1.0) and the median fibroblast SF2 was 0.49 (range 0.24–1.0). Comparing data from independent experiments, the overall SF2 was significantly correlated with the SF2 of fibroblasts (2P = 0.006) but not with the tumour cell SF2. The tumour cell and fibroblast radiosensitivities measured in the same individuals were not correlated (r = 0.06, 95% CI [–0.19, 0.30]). This finding seems to preclude a strong correlation between the radiosensitivity of tumour cells and fibroblasts. Concerning the clinical characteristics, neither of the measures of tumour radiosensitivity was correlated with T- and N-category, stage, tumour size, sex and age. However, the tumour cell radiosensitivity decreased with increasing grade of histopathological differentiation (2P = 0.012). The same tendency was found in two independent analyses of the same patient material. This correlation was not significant in case of the overall SF2 or the fibroblast SF2. © 1999 Cancer Research Campaig

    HMG CoA reductase inhibitors (statins) to treat Epstein–Barr virus-driven lymphoma

    Get PDF
    While statins have been highly effective for lowering serum cholesterol and reducing the incidence of coronary events, they have multiple other effects. Certain statins block the interaction of adhesion molecules that are important for cell–cell interactions including those between EBV-transformed B cells. These same statins inhibit NF-κB activation in the cells and induce apoptosis of transformed B cells. Studies in severe combined immunodeficiency mice show that simvastatin delays the development of EBV-lymphomas in these animals. These statins might be considered for the treatment of EBV-lymphomas in selected patients
    • …
    corecore