42 research outputs found

    Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data

    No full text
    Fire Spread Rate (FSR) can indicate how fast a fire is spreading, which is especially helpful for wildfire rescue and management. Historically, images obtained from sun-orbiting satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS) were used to detect active fire and burned area at the large spatial scale. However, the daily revisit cycles make them inherently unable to extract FSR in near real­-time (hourly or less). We argue that the Himawari-8, a next generation geostationary satellite with a 10-min temporal resolution and 0.5–2 km spatial resolution, may have the potential for near real-time FSR extraction. To that end, we propose a novel method (named H8-FSR) for near real-time FSR extraction based on the Himawari-8 data. The method first defines the centroid of the burned area as the fire center and then the near real-time FSR is extracted by timely computing the movement rate of the fire center. As a case study, the method was applied to the Esperance bushfire that broke out on 17 November, 2015, in Western Australia. Compared with the estimated FSR using the Commonwealth Scientific and Industrial Research Organization (CSIRO) Grassland Fire Spread (GFS) model, H8-FSR achieved favorable performance with a coefficient of determination (R2) of 0.54, mean bias error of –0.75 m/s, mean absolute percent error of 33.20% and root mean square error of 1.17 m/s, respectively. These results demonstrated that the Himawari-8 data are valuable for near real-time FSR extraction, and also suggested that the proposed method could be potentially applicable to other next generation geostationary satellite data

    Evaluation of Himawari-8 for live fuel moisture content retrieval

    No full text
    Near-real-time monitoring live fuel moisture content (LFMC) from remote sensing is paramount to wildfire early management at a large scale since LFMC is a critical variable in affecting fire ignition and fire spread rate. The geostationary satellite Himawari-8 observes the land surface every 10 minutes, making near-real-time LFMC retrieval achievable. To this end, the potential of Himawari-8 data for LFMC retrieval using the radiative transfer model was explored in this study. The performance of retrieved LFMC was validated using 16 LFMC samplings located in Australia involving two land cover types: croplands and tree cover lands. Additionally, the MODIS data was also applied and compared for the LFMC retrieval. The results showed that Himawati-8 data performed poor accuracy level with R-2 and RMSE of 0.26 and 42.16%, respectively. Whereas better accuracy level was found for MODIS data, R-2 and RMSE were 0.67 and 29.17%, respectively. This result indicated that the LFMC estimated from Himawari-8 is challenged. Detailed fieldwork and methodology improvements adopted for this data are needed for improving the LFMC estimate in the future

    Relationships between Burn Severity and Environmental Drivers in the Temperate Coniferous Forest of Northern China

    No full text
    Burn severity is a key component of fire regimes and is critical for quantifying fires’ impacts on key ecological processes. The spatial and temporal distribution characteristics of forest burn severity are closely related to its environmental drivers prior to the fire occurrence. The temperate coniferous forest of northern China is an important part of China’s forest resources and has suffered frequent forest fires in recent years. However, the understanding of environmental drivers controlling burn severity in this fire-prone region is still limited. To fill the gap, spatial pattern metrics including pre-fire fuel variables (tree canopy cover (TCC), normalized difference vegetation index (NDVI), and live fuel moisture content (LFMC)), topographic variables (elevation, slope, and topographic radiation aspect index (TRASP)), and weather variables (relative humidity, maximum air temperature, cumulative precipitation, and maximum wind speed) were correlated with a remote sensing-derived burn severity index, the composite burn index (CBI). A random forest (RF) machine learning algorithm was applied to reveal the relative importance of the environmental drivers mentioned above to burn severity for a fire. The model achieved CBI prediction accuracy with a correlation coefficient (R) equal to 0.76, root mean square error (RMSE) equal to 0.16, and fitting line slope equal to 0.64. The results showed that burn severity was mostly influenced by flammable live fuels and LFMC. The elevation was the most important topographic driver, and meteorological variables had no obvious effect on burn severity. Our findings suggest that in addition to conducting strategic fuel reduction management activities, planning the landscapes with fire-resistant plants with higher LFMC when possible (e.g., “Green firebreaks”) is also indispensable for lowering the burn severity caused by wildfires in the temperate coniferous forests of northern China

    Relationships between Burn Severity and Environmental Drivers in the Temperate Coniferous Forest of Northern China

    No full text
    Burn severity is a key component of fire regimes and is critical for quantifying fires’ impacts on key ecological processes. The spatial and temporal distribution characteristics of forest burn severity are closely related to its environmental drivers prior to the fire occurrence. The temperate coniferous forest of northern China is an important part of China’s forest resources and has suffered frequent forest fires in recent years. However, the understanding of environmental drivers controlling burn severity in this fire-prone region is still limited. To fill the gap, spatial pattern metrics including pre-fire fuel variables (tree canopy cover (TCC), normalized difference vegetation index (NDVI), and live fuel moisture content (LFMC)), topographic variables (elevation, slope, and topographic radiation aspect index (TRASP)), and weather variables (relative humidity, maximum air temperature, cumulative precipitation, and maximum wind speed) were correlated with a remote sensing-derived burn severity index, the composite burn index (CBI). A random forest (RF) machine learning algorithm was applied to reveal the relative importance of the environmental drivers mentioned above to burn severity for a fire. The model achieved CBI prediction accuracy with a correlation coefficient (R) equal to 0.76, root mean square error (RMSE) equal to 0.16, and fitting line slope equal to 0.64. The results showed that burn severity was mostly influenced by flammable live fuels and LFMC. The elevation was the most important topographic driver, and meteorological variables had no obvious effect on burn severity. Our findings suggest that in addition to conducting strategic fuel reduction management activities, planning the landscapes with fire-resistant plants with higher LFMC when possible (e.g., “Green firebreaks”) is also indispensable for lowering the burn severity caused by wildfires in the temperate coniferous forests of northern China

    Global fuel moisture content mapping from MODIS

    Get PDF
    International audienceFuel moisture content (FMC) of live vegetation is a crucial wildfire risk and spread rate driver. This study presents the first daily FMC product at a global scale and 500 m pixel resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) and radiative transfer models (RTMs) inversion techniques. Firstly, multi-source information parameterized the PROSPECT-5 (leaf level), 4SAIL (grass and shrub canopy level) and GeoSail (tree canopy level) RTMs to generate three look-up tables (LUTs). Each LUT contained the most realistic model inputs range and combination, and the corresponding simulated spectra. Secondly, for each date and location of interest, a global landcover map classified fuels into three classes: grassland, shrubland and forest. For each fuel class, the best LUT-based inversion strategy based on spectral information, cost function, percentage of solutions, and central tendency determined the optimal model for the global FMC product. Finally, 3,034 FMC measurements from 120 worldwide sites validated the statistically significant results (R2 = 0.62, RMSE = 34.57%, p < 0.01). Filtering out low quality field measurements achieved better accuracy (R2 = 0.71, RMSE = 32.36%, p < 0.01, n = 2008). It is anticipated that this global FMC product can assist in wildfire danger modeling, early prediction, suppression and response, as well as improve awareness of wildfire risk to life and property

    Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data

    No full text
    Fire Spread Rate (FSR) can indicate how fast a fire is spreading, which is especially helpful for wildfire rescue and management. Historically, images obtained from sun-orbiting satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS) were used to detect active fire and burned area at the large spatial scale. However, the daily revisit cycles make them inherently unable to extract FSR in near real&shy;-time (hourly or less). We argue that the Himawari-8, a next generation geostationary satellite with a 10-min temporal resolution and 0.5&ndash;2 km spatial resolution, may have the potential for near real-time FSR extraction. To that end, we propose a novel method (named H8-FSR) for near real-time FSR extraction based on the Himawari-8 data. The method first defines the centroid of the burned area as the fire center and then the near real-time FSR is extracted by timely computing the movement rate of the fire center. As a case study, the method was applied to the Esperance bushfire that broke out on 17 November, 2015, in Western Australia. Compared with the estimated FSR using the Commonwealth Scientific and Industrial Research Organization (CSIRO) Grassland Fire Spread (GFS) model, H8-FSR achieved favorable performance with a coefficient of determination (R2) of 0.54, mean bias error of &ndash;0.75 m/s, mean absolute percent error of 33.20% and root mean square error of 1.17 m/s, respectively. These results demonstrated that the Himawari-8 data are valuable for near real-time FSR extraction, and also suggested that the proposed method could be potentially applicable to other next generation geostationary satellite data

    Near real-time extracting Wildfire spread rate from Himawari-8 satellite data

    No full text
    Fire Spread Rate (FSR) can indicate how fast a fire is spreading, which is especially helpful for wildfire rescue and management. Historically, images obtained from sun-orbiting satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS) were used to detect active fire and burned area at the large spatial scale. However, the daily revisit cycles make them inherently unable to extract FSR in near real-time (hourly or less). We argue that the Himawari-8, a next generation geostationary satellite with a 10-min temporal resolution and 0.5–2 km spatial resolution, may have the potential for near real-time FSR extraction. To that end, we propose a novel method (named H8-FSR) for near real-time FSR extraction based on the Himawari-8 data. The method first defines the centroid of the burned area as the fire center and then the near real-time FSR is extracted by timely computing the movement rate of the fire center. As a case study, the method was applied to the Esperance bushfire that broke out on 17 November, 2015, in Western Australia. Compared with the estimated FSR using the Commonwealth Scientific and Industrial Research Organization (CSIRO) Grassland Fire Spread (GFS) model, H8-FSR achieved favorable performance with a coefficient of determination (R2) of 0.54, mean bias error of –0.75 m/s, mean absolute percent error of 33.20% and root mean square error of 1.17 m/s, respectively. These results demonstrated that the Himawari-8 data are valuable for near real-time FSR extraction, and also suggested that the proposed method could be potentially applicable to other next generation geostationary satellite data

    Development and validation of the SMOS-IC version 2 (V2) soil moisture product

    No full text
    International audienceSince the first version of the SMOS-IC retrieval product was released in 2017, its soil moisture (SM) and L-band Vegetation Optical depth (VOD) retrievals have proven to be a very interesting alternative product for the SMOS mission. This product relies on a two-parameter inversion of the L-MEB model (L-band Microwave Emission of the Biosphere) which is independent of auxiliary data, a key feature making it well-suited for application in hydrology, agriculture, climate, and carbon cycle. This paper describes the development and validation of the most recent SMOS-IC version (V2) soil moisture product. Compared with the previous version (V105), a new constraint was applied on VOD in the cost function which is minimized in the retrieval process. Soil moisture retrievals from SMOS-IC V2 & V105 were inter-compared against the “European Centre for Medium-Range Weather Forecasts” (ECMWF) modelled SM and the “International Soil Moisture Network” (ISMN) in-situ measurements during 2011-2017 over France. It was found that the average retrieval uncertainty of the new version product was lower than that of the old version, particularly when vegetation density increased. The new version of the SMOS-IC soil moisture product will be made available to the public through the CATDS (Centre Aval de Traitements des DonnĂ©es SMOS) website

    An alternative AMSR2 vegetation optical depth for monitoring vegetation at large scales

    No full text
    International audienceVegetation optical depth (VOD) retrieved from microwave observations has been found to be useful to monitor the dynamics of the vegetation features at global scale. Particularly, many applications could be developed in several fields of research (ecology, water and carbon cycle, etc.) from VOD products retrieved from the SMOS and SMAP observations at L-band, and from the combined AMSR-E (2002−2011)/AMSR2 (2012-present) observations at C- and X-bands. One of the main difficulties in retrieving VOD is that the microwave observations are sensitive to both the soil (mainly soil moisture) and vegetation (mostly VOD) features. The AMSR-E/2 sensors provide only mono-angular observations at two polarizations. These dual-channel observations may be strongly correlated so that retrieving SM and VOD simultaneously can be an ill-posed problem. Here, to overcome this problem, we proposed and evaluated a new retrieval approach from AMSR2 observations at X-band to produce a new X-VOD product. The X-VOD retrievals were based on the inversion of the X-MEB model, an extension of the L-MEB model (L-band microwave emission of the biosphere) to the X-band. The main originality in comparison to previous algorithms is that (i) only VOD was retrieved while SM was estimated from a reanalysis data set (ERA5-Land); (ii) model inversion was based on an innovative approach to initialize the cost function; and (iii) new values for the soil and vegetation X-MEB model parameters were calibrated. To evaluate the methodology, we performed the VOD retrievals over the whole African continent over 2014–2016, including a dry (2015) and a wet (2014) year. In a first step, we calibrated a set of three parameters: effective scattering albedo (ω), soil roughness (HR) and VOD first guess (VODini). Several datasets of vegetation indices as Above-Ground Biomass (AGB), Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) were chosen as reference data to optimize these model parameters. Globally-constant values (ω = 0.06 and HR = 0.6) were found to achieve high spatial and temporal correlations between retrieved X-VOD and the reference vegetation parameters. Comparison with other X-VOD products suggested IB X-VOD had competitive advantages in terms of both spatial and temporal performances. In particular, spatial correlation with three biomass datasets was found to be higher than for previous X-VOD products (R2 ~ 0.76–0.83) and temporal correlation with LAI or NDVI showed obvious improvements, especially in dense vegetation
    corecore