20,629 research outputs found

    Modulated phases and devil's staircases in a layered mean-field version of the ANNNI model

    Get PDF
    We investigate the phase diagram of a spin-1/21/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-feild version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil's staircase. We numerically calculate the Hausdorff dimension D0D_{0} associated with these fractal structures, and show that D0D_{0} increases with temperature but seems to reach a limiting value smaller than D0=1D_{0}=1.Comment: 17 pages, 6 figure

    New Cosmic Accelerating Scenario without Dark Energy

    Get PDF
    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Λ\LambdaCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes sub-dominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Λ\LambdaCDM model, however, there is no dark energy. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)210122\rho_I/\rho_f=(H_I/H_f)^{2} \sim 10^{122}, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ\Lambda growth index, γΛ6/11\gamma_{\Lambda} \simeq 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2\chi^{2} statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.Comment: 12 pages, 3 figures, accepted for publication by Phys. Rev. D. (final version, some references have corrected). arXiv admin note: substantial text overlap with arXiv:1106.193

    Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation

    Full text link
    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1\Omega_{m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields Ω~m=0.28±0.01{\tilde{\Omega}}_{m}= 0.28\pm 0.01 (1σ1\sigma) where Ω~m\tilde{{\Omega}}_{m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Λ\LambdaCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Λ\LambdaCDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.

    Tunable entanglement distillation of spatially correlated down-converted photons

    Full text link
    We report on a new technique for entanglement distillation of the bipartite continuous variable state of spatially correlated photons generated in the spontaneous parametric down-conversion process (SPDC), where tunable non-Gaussian operations are implemented and the post-processed entanglement is certified in real-time using a single-photon sensitive electron multiplying CCD (EMCCD) camera. The local operations are performed using non-Gaussian filters modulated into a programmable spatial light modulator and, by using the EMCCD camera for actively recording the probability distributions of the twin-photons, one has fine control of the Schmidt number of the distilled state. We show that even simple non-Gaussian filters can be finely tuned to a ~67% net gain of the initial entanglement generated in the SPDC process.Comment: 12 pages, 6 figure

    Analysing and controlling the tax evasion dynamics via majority-vote model

    Full text link
    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erd\"os-R\'enyi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhod of the noise critical qcq_{c}. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust and can be reproduced also through the nonequilibrium MVM on various topologies.Comment: 18 pages, 7 figures, LAWNP'09, 200

    Experiência de capacitação de empregados com atividades em laboratório na Embrapa Amazônia Oriental.

    Get PDF
    Editores técnicos: Nádia Elígia Pinto Paracampo, Laura Figueiredo Abreu. XIII MET

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review

    Spin-polarized transport in ferromagnetic multilayered semiconductor nanostructures

    Full text link
    The occurrence of inhomogeneous spin-density distribution in multilayered ferromagnetic diluted magnetic semiconductor nanostructures leads to strong dependence of the spin-polarized transport properties on these systems. The spin-dependent mobility, conductivity and resistivity in (Ga,Mn)As/GaAs,(Ga,Mn)N/GaN, and (Si,Mn)/Si multilayers are calculated as a function of temperature, scaled by the average magnetization of the diluted magnetic semiconductor layers. An increase of the resistivity near the transition temperature is obtained. We observed that the spin-polarized transport properties changes strongly among the three materials.Comment: 3 pages, 4 figure

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    Full text link
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ωeff0\Omega^0_{\rm eff}. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ωeff0<0.910.59 < \Omega^0_{\rm eff} < 0.91 and 0.40<Ωeff0<0.930.40 < \Omega^0_{\rm eff} < 0.93 within, respectively, 1σ1\sigma and 3σ3\sigma confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ωeff0\Omega^0_{\rm eff} observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl

    Black Hole Formation with an Interacting Vacuum Energy Density

    Get PDF
    We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological \beta-parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the values of \beta. In the radiation case, a trapped surface is formed for \beta<1/2 whereas for \beta>1/2, a naked singularity is developed. In general, the critical value is \beta=1-2/3(1+\omega), where the \omega-parameter describes the equation of state of the fluid component.Comment: 9 pages, 8 figure
    corecore