16,742 research outputs found

    ELECTROMYOGRAPHY AND KINEMATIC CHARACTERISTICS OF OBSTACLE GAIT IN ELDERLY PARKINSON’S PATIENTS

    Get PDF
    INTRODUCTION: Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles in elderly Parkinson's patients. The purpose of this study was to investigate the lower extremity muscle activity and kinematics of obstacle gait in Parkinson's patients

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Premelting of Thin Wires

    Full text link
    Recent work has raised considerable interest on the nature of thin metallic wires. We have investigated the melting behavior of thin cylindrical Pb wires with the axis along a (110) direction, using molecular dynamics and a well-tested many-body potential. We find that---in analogy with cluster melting---the melting temperature Tm(R)T_m (R) of a wire with radius RR is lower than that of a bulk solid, TmbT_m^b, by Tm(R)=Tmbc/RT_m (R) = T_m^b -c/R. Surface melting effects, with formation of a thin skin of highly diffusive atoms at the wire surface, is observed. The diffusivity is lower where the wire surface has a flat, local (111) orientation, and higher at (110) and (100) rounded areas. The possible relevance to recent results on non-rupturing thin necks between an STM tip and a warm surface is addressed.Comment: 10 pages, 4 postscript figures are appended, RevTeX, SISSA Ref. 131/94/CM/S

    Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator

    Get PDF
    We demonstrate production of quantum correlated and entangled beams by second harmonic generation in a nonlinear resonator with two output ports. The output beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure

    DELVING INTO BEHAVIORAL FINANCE: UNCOVERING THE LINKAGE BETWEEN INVESTMENT PREFERENCE, INVESTOR’S PROFILE, PERSONALITY TRAITS, RISK PERCEPTION, AND INVESTMENT GOALS

    Get PDF
    Investment is a popular economic vehicle where, in the hope of producing more revenue, people invest their capital. Investors are expected to make investment decisions that maximize returns.  This study conducted a survey of 96 working adults who made investments in stock, bonds, short-term instruments, mutual funds, and/or foreign currencies. It used explanatory variables such as the profile of investors, the perception of risk, personality characteristics, and investment goals. Investment preference was the outcome variable. Significant results revealed that for medium-term investments, only the conservative and moderate investor profiles had a significant relationship with investor preference. Investment goals showed only partial significance

    Mimicking diffuse supernova antineutrinos with the Sun as a source

    Full text link
    Measuring the electron antineutrino component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E < 15 MeV a possible signal can be mimicked by a solar electron antineutrino flux that originates from the usual 8B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E > 15 MeV.Comment: 4 pages, 1 figur

    Entanglement preparation using symmetric multiports

    Full text link
    We investigate the entanglement produced by a multi-path interferometer that is composed of two symmetric multiports, with phase shifts applied to the output of the first multiport. Particular attention is paid to the case when we have a single photon entering the interferometer. For this situation we derive a simple condition that characterize the types of entanglement that one can generate. We then show how one can use the results from the single photon case to determine what kinds of multi-photon entangled states one can prepare using the interferometer.Comment: 6 pages, 2 figures, accepted for publication in European Journal of Physics

    A new mechanism shapes the naïve CD8+ T cell repertoire: the selection for full diversity

    Get PDF
    During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clone sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of this data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement; and 3–5% of thymocytes survive thymic selection events; the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity
    corecore