8 research outputs found

    The role of serotype-specific immunological memory in pneumococcal vaccination: Current knowledge and future prospects

    No full text
    Streptococcus pneumoniae (S. pneumoniae, pneumococcus) is a major cause of morbidity and mortality worldwide. Achieving long-term immunity against S. pneumoniae through immunization is an important public health priority. Long-term protection after immunization is thought to rely both on protective serum antibody levels and immunological memory in the form of antigen-specific memory B cells (MBCs). Although the ability to achieve protective antibody levels shortly after pneumococcal vaccination has been well documented for the various infant immunization schedules currently in use worldwide, the examination of immunological memory in the form of antigen-specific MBCs has been much more limited. Such responses are critical for long-term protection against pneumococcal colonization and disease. This review summarizes the published literature on the MBC response to primary or booster immunization with either pneumococcal polysaccharide vaccine (PPV23) or pneumococcal conjugate vaccines (PCVs), aiming to elucidate the immunological mechanisms that determine the magnitude and longevity of vaccine protection against pneumococcus. There is evidence that PCVs induce the production of antigen-specific MBCs, whereas immunization with PPV23 does not result in the formation of MBCs. Increased understanding of the immunological factors that facilitate the induction, maintenance and recall of MBCs in response to pneumococcal vaccination could enable the use of MBC enumeration as novel correlates of protection against S. pneumoniae. Ongoing studies that examine MBC response to pneumococcal vaccination in high burden settings will be extremely important in our understanding of long-term protection induced by pneumococcal conjugate vaccines. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Serotype-specific avidity is achieved following a single dose of the 7-valent pneumococcal conjugate vaccine, and is enhanced by 23-valent pneumococcal polysaccharide booster at 12 months.

    No full text
    AIM: To evaluate whether the avidity of serotype-specific IgG to pneumococcal serotypes is enhanced by an increased number of doses of the 7-valent pneumococcal conjugate vaccine (PCV) in infancy or by a 12 month 23-valent pneumococcal polysaccharide vaccine (23vPPS) booster, and/or subsequent re-exposure to a small dose of pneumococcal polysaccharide antigens (mPPS) at 17 months. METHODS: Fijian infants aged 6 weeks were recruited, stratified by ethnicity and randomized to 8 groups to receive 0, 1, 2, or 3 doses of PCV, with or without 23vPPS at 12 months. All children received mPPS at 17 months of age. Avidity of serotype-specific IgG for PCV serotypes in the first 12 months and for all 23vPPS serotypes thereafter was assessed by EIA after sodium thiocyanate elution. RESULTS: At one month post primary series, the 2 and 3 PCV dose groups demonstrated similar avidity, with the single dose group tending to have lower avidity. However, by age 9 months, the single dose group had similar avidity to the 2 and 3 PCV groups for most serotypes. The 23vPPS booster enhanced affinity maturation for most serotypes and this was most marked in those groups that received a single PCV dose. There was little further increase following the mPPS. CONCLUSIONS: By 9 months of age, similar avidity can be induced following one, 2 or 3 doses of PCV. A 23vPPS booster at 12 months enhanced affinity maturation with an increase in antibody avidity for most serotypes. Subsequent re-challenge with mPPS at 17 months did not further enhance the avidity of serotype-specific response in the 12 month 23vPPS groups

    A Nonadjuvanted Whole-Inactivated Pneumococcal Vaccine Induces Multiserotype Opsonophagocytic Responses Mediated by Noncapsule-Specific Antibodies

    Get PDF
    Published 20 September 2022Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gammairradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development.Shannon C. David, Erin B. Brazel, Eve V. Singleton, Vikrant Minhas, Zoe Laan, Catherine Scougall, Austen Y. Chen, Hui Wang, Chloe J. Gates, Kimberley T. McLean, Jeremy S. Brown, Giuseppe Ercoli, Rachel A. Higgins, Paul V. Licciardi, Kim Mulholland, Justin B. Davies, Timothy R. Hirst, James C. Paton, Mohammed Alsharifi

    Opsonophagocytic activity following a reduced dose 7-valent pneumococcal conjugate vaccine infant primary series and 23-valent pneumococcal polysaccharide vaccine at 12 months of age.

    No full text
    Opsonophagocytic activity (OPA) was measured following reduced infant doses of 7-valent pneumococcal conjugate vaccine (PCV-7) with or without 23-valent pneumococcal polysaccharide vaccine (PPV-23) at 12 months, and subsequent re-exposure to a small dose of pneumococcal polysaccharide antigens (mPPS) at 17 months. Fijian infants were randomized to receive 0, 1, 2, or 3 PCV-7 doses. Half received PPV-23 at 12 months and all received mPPS at 17 months. OPA was performed on up to 14 serotypes. Three and 2 PCV-7 doses resulted in similar OPA for most PCV-7 serotypes up to 9 months and for half of the serotypes at 12 months. A single dose improved OPA compared with the unvaccinated group. PPV-23 significantly improved OPA for all serotypes tested but in general, was associated with diminished responses following re-challenge

    Nanotechnology Based Delivery Systems of Drugs Currently Used to Treat Alzheimer’s Disease

    No full text

    Epigenetic Metalloenzymes

    No full text
    corecore