448 research outputs found

    Control of the pinewood nematode Bursaphelenchus xylophilus by essential oils and extracts obtained from plants: a review.

    Get PDF
    The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a serious threat to forest ecosystems at a global scale. The nematode has become a major quarantine problem due to its capability to completely destroy Pinus spp. trees, with great damage to the wood industry. Controlling the nematode inside a living tree is quite difficult, the techniques used being often ineffective and quite expensive. In the coming years, most chemicals used to control nematodes will be banned and replaced by safer and environmentally friendly products. As so, chemicals naturally produced by plants will play an important role in controlling diseases such as pine wilt. Plants, particularly aromatic ones, are commonly used due to the chemical properties of their secondary metabolites. Among these, essential oils and/or extracts are highly employed and are being tested as possible control of some organisms, like nematodes. Recent publications have evaluated essential oils derived from different plant species as natural nematicides [1; 2], antibacterial [3], anti-fungal [4] as well as insecticidal [5]. Concerning control of the PWN, a significant amount of information on plants tested, results obtained and employed techniques, is available. Our revision has extensively gathered this information, making it easier to search, read and use. It may become useful information for future studies on the subject, since it will be possible to check the plants already tested. Although numbers aren´t definitive, so far, tested plants are distributed amongst 148 families. The extracts or essential oils of plants belonging to the Asteraceae, Lamiaceae and Euphorbiaceae families show promising results on controlling the pinewood nematode

    Optimal planning and campaign scheduling of biopharmaceutical processes using a continuous-time formulation

    Get PDF
    This work addresses the optimal planning and campaign scheduling of biopharmaceutical manufacturing processes, considering multiple operational characteristics, such as the campaign schedule of batch and/or continuous process steps, multiple intermediate deliveries, sequence dependent changeovers operations, product storage restricted to shelf-life limitations, and the track-control of the production/campaign lots due to regulatory policies. A new mixed integer linear programing (MILP) model, based on a Resource Task Network (RTN) continuous time single-grid formulation, is developed to comprise the integration of all these features. The performance of the model features is discussed with the resolution of a set of industrial problems with different data sets and process layouts, demonstrating the wide application of the proposed formulation. It is also performed a comparison with a related literature model, showing the advantages of the continuous-time approach and the generality of our model for the optimal production management of biopharmaceutical processes

    Genetic diversity of Bursaphelenchus cocophilus in South America

    Get PDF
    Molecular characterisation of Bursaphelenchus cocophilus, the causal agent of ‘red ring disease’, is imperative for efficient identification procedures in Brazil and Colombia, because quarantine species such as B. xylophilus and B. mucronatus are already listed in both countries. ITS-1/2 region and D2-D3 segment of LSU rDNA were used to characterise isolates of B. cocophilus obtained from coconut plantations in Brazil and Colombia. Results from ITS-1/2 and LSU rDNA regions showed that all isolates of B. cocophilus from Brazil and Colombia formed a monophyletic group. The LSU rDNA region indicated that all isolates formed a single monophyletic group with high Bayesian posterior probability (100%). This is the first study on ITS-1/2 for the characterisation of B. cocophilus populations. A species-specific primer was designed for identification of B. cocophilus

    SHOC2 scaffold protein modulates daunorubicin-induced cell death through p53 modulation in lymphoid leukemia cells

    Get PDF
    SHOC2 scaffold protein has been mainly related to oncogenic ERK signaling through the RAS-SHOC2-PP1 phosphatase complex. In leukemic cells however, SHOC2 upregulation has been previously related to an increased 5-year event-free survival of pediatric pre-B acute lymphoid leukemia, suggesting that SHOC2 could be a potential prognostic marker. To address such paradoxical function, our study investigated how SHOC2 impact leukemic cells drug response. Our transcriptome analysis has shown that SHOC2 can modulate the DNA-damage mediated by p53. Notably, upon genetic inhibition of SHOC2 we observed a significant impairment of p53 expression, which in turn, leads to the blockage of key apoptotic molecules. To confirm the specificity of DNA-damage related modulation, several anti-leukemic drugs has been tested and we did confirm that the proposed mechanism impairs cell death upon daunorubicin-induced DNA damage of human lymphoid cells. In conclusion, our study uncovers new insights into SHOC2 function and reveals that this scaffold protein may be essential to activate a novel mechanism of p53-induced cell death in pre-B lymphoid cells

    Sclerosing peritonitis associated with luteinized thecoma and elevated serum CA 125 levels: case report

    Get PDF
    CONTEXT. Thecomas are benign tumors that account for less than 1% of all ovarian neoplasms. The association of ovarian thecoma with sclerosing peritonitis is rare. CASE REPORT: We report the case of a 33-year-old woman, with a two-month history of increasing abdominal volume. Ultrasound showed a complex pelvic lesion and laboratory analysis detected elevated serum CA 125 levels. The patient underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy and peritoneal biopsy. Histopathological analysis revealed the presence of luteinized thecoma of both ovaries associated with sclerosing peritonitis.126212312

    Enrichment of sulphate-reducers and depletion of butyrate-producers may be hyperglycaemia signatures in the diabetic oral microbiome

    Get PDF
    Objectives This study aimed to investigate oral microbial signatures associated with hyperglycaemia, by correlating the oral microbiome with three glycaemic markers. Potential association between clinical parameters and oral bacterial taxa that could be modulating the hyperglycaemic microbiome was also explored. Methods Twenty-three individuals diagnosed with type 2 Diabetes Mellitus (T2D) and presenting periodontitis were included, as well as 25 systemically and periodontally healthy ones. Fasting blood glucose, glycated haemoglobin, salivary glucose, periodontitis classification, caries experience and activity and salivary pH were evaluated. The V4 region of the 16S rRNA gene was amplified from total salivary DNA, and amplicons were sequenced (Illumina MiSeq). Results Hyperglycaemia was correlated with proportions of Treponema, Desulfobulbus, Phocaiecola and Saccharimonadaceae. Desulfobulbus was ubiquitous and the most enriched organism in T2D individuals (log2FC = 4). The Firmicutes/Bacteroidetes ratio was higher at alkali salivary pH than acidic pH. In the network analysis, Desulfobulbus was clustered in a negative association with caries-associated and butyrate-producing bacteria. Conclusion The salivary microbiome is shaped by systemic hyperglycaemia, as well as changes in the salivary pH, which may be linked to local hyperglycaemia. The enrichment of predictive biomarkers of gut dysbiosis in the salivary microbiome can reflect its capacity for impairment of hyperglycaemia

    A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58

    Get PDF
    Here we define a ~ 200Kb genomic duplication in 2p14 as the genetic signature that segregates with post-lingual progressive sensorineural autosomal dominant hearing loss in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein-coding), in addition to four uncharacterized long noncoding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to hearing loss such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 hearing loss

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
    • …
    corecore