24 research outputs found

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Indirect inactivation of tyrosinase in its action on 4- tert

    No full text
    Under anaerobic conditions, the o-diphenol 4-tert-butylcatechol (TBC) irreversibly inactivates met and deoxytyrosinase enzymatic forms of tyrosinase. However, the monophenol 4-tert-butylphenol (TBF) protects the enzyme from this inactivation. Under aerobic conditions, the enzyme suffers suicide inactivation when it acts on TBC. We suggest that TBF does not directly cause the suicide inactivation of the enzyme in the hydroxylase activity, but that the o-diphenol, which is necessary for the system to reach the steady state, is responsible for the process. Therefore, monophenols do not induce the suicide inactivation of tyrosinase in its hydroxylase activity, and there is a great difference between the monophenols that give rise to unstable o-quinones such as L-tyrosine, which rapidly accumulate L-dopa in the medium and those like TBF, after oxidation, give rise to a very stable o-quinone
    corecore