108 research outputs found

    The Galactic Center Black Hole Laboratory

    Full text link
    The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's "Fundamental Theories of Physics" series; summarizing GC contributions of 2 conferences: 'Equations of Motion in Relativistic Gravity' at the Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov. 19 - 22, 2013

    Teaching energy conservation as a unifying principle in physics

    Get PDF
    In this work we present the design and assessment of a teaching sequence aimed at introducing the principle of energy conservation at post-compulsory secondary school level (16-18 year olds). The proposal is based on the result of research into teaching-learning difficulties and on the analysis of the physics framework. Evidence is shown that this teaching sequence, together with the methodology used in the classroom, may result in students having a better grasp of the principle of energy conservation. Keywords Physics education · Energy conceptions · Teaching activitie

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    The effects of numeracy and presentation format on judgments of contingency

    Get PDF
    Covariation information can be used to infer whether a causal link plausibly exists between two dichotomous variables, and such judgments of contingency are central to many critical and everyday decisions. However, individuals do not always interpret and integrate covariation information effectively, an issue that may be compounded by limited numeracy skills, and they often resort to the use of heuristics, which can result in inaccurate judgments. This experiment investigated whether presenting covariation information in a composite bar chart increased accuracy of contingency judgments, and whether it can mitigate errors driven by low numeracy skills. Participants completed an online questionnaire, which consisted of an 11-item numeracy scale and three covariation problems that varied in level of difficulty, involving a fictitious fertilizer and its impact on whether a plant bloomed or not. Half received summary covariation information in a composite bar chart, and half in a 2 × 2 matrix that summarized event frequencies. Viewing the composite bar charts increased accuracy of individuals both high and low in numeracy, regardless of problem difficulty, resulted in more consistent judgments that were closer to the normatively correct value, and increased the likelihood of detecting the correct direction of association. Findings are consistent with prior work, suggesting that composite bar charts are an effective way to improve covariation judgment and have potential for use in the domain of health risk communication

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout in Lake Superior

    Get PDF
    Four morphs of Lake Trout (Salvelinus namaycush, Walbaum 1792) have been identified in Lake Superior: leans, siscowets, humpers, and redfins. In this comprehensive study, the trophic ecology of Lake Trout morphs were characterized using stomach content, fatty acid, and stable isotope data. Stomach content results indicated a predominately piscivorous diet for leans, siscowets, and redfins, whereas humper diets were comprised of 50% fish and 50% Mysis by mass. Humper and siscowets were most similar in their dietary fatty acid profiles, whereas redfins had the most distinct dietary fatty acid profile. Results from stable isotope analysis revealed some among-morph differences along a pelagic-profundal consumption gradient (34S), but there were no significant differences in trophic position (15N) or basal carbon sources among morphs (13C). Using the recently developed nicheROVER software package, 4-dimensional trophic niches for each morph were quantified using stable isotope ratios (δ13C, δ15N, and δ34S) and fatty acid profiles (30 dietary fatty acids, condensed to one axis). Humpers had the largest 4-dimensional niche regions of all four morphs, and redfins had the smallest. Pairwise probability of overlap among morphs in these four-dimensional niche regions was determined to be < 50% in most cases. Overall, stomach content results indicate that humpers diets were more planktivorous than the other morphs, consistent with previous research. Results of the niche overlap analysis suggests some degree of generalist feeding for all morphs. Better characterization of seasonal variation in diet using tracers that reflect more recent feeding (e.g., fatty acids, stomach contents, and/or stable isotope analyses performed on tissues that turnover more quickly than muscle) are needed to further elucidate among-morph differences and similarities in diet and trophic ecology
    corecore