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Abstract 

Four morphs of Lake Trout (Salvelinus namaycush, Walbaum 1792) have been identified 

in Lake Superior: leans, siscowets, humpers, and redfins. In this comprehensive study, the 

trophic ecology of Lake Trout morphs were characterized using stomach content, fatty acid, and 

stable isotope data. Stomach content results indicated a predominately piscivorous diet for leans, 

siscowets, and redfins, whereas humper diets were comprised of 50% fish and 50% Mysis by 

mass. Humpers and siscowets were most similar in their dietary fatty acid profiles, whereas 

redfins had the most distinct dietary fatty acid profile. Results from stable isotope analysis 

revealed some among-morph differences along a pelagic-profundal consumption gradient (34S), 

but there were no significant differences in trophic position (15N) or basal carbon sources 

among morphs (13C). Using the recently developed nicheROVER software package, 4-

dimensional trophic niches for each morph were quantified using stable isotope ratios (δ13C, 

δ15N, and δ34S) and fatty acid profiles (30 dietary fatty acids, condensed to one axis). Humpers 

had the largest 4-dimensional niche regions of all four morphs, and redfins had the smallest. 

Pairwise probability of overlap among morphs in these four-dimensional niche regions was 

determined to be < 50% in most cases. Overall, stomach content results indicate that humpers 

diets were more planktivorous than the other morphs, consistent with previous research. Results 

of the niche overlap analysis suggests some degree of generalist feeding for all morphs. Better 

characterization of seasonal variation in diet using tracers that reflect more recent feeding (e.g., 

fatty acids, stomach contents, and/or stable isotope analyses performed on tissues that turnover 

more quickly than muscle) are needed to further elucidate among-morph differences and 

similarities in diet and trophic ecology.  
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Chapter 1 

Introduction 

1.1 Lake Superior 

Lake Superior is the largest of the Laurentian Great Lakes, and the largest lake by surface 

area in the world, holding an estimated 10% of the world’s freshwater (White et al., 2012). It has 

a mean average water temperature of 3.5 °C, an average depth of 147 m and a maximum depth of 

406 m (Horns et al., 2003). Most of the waters of Lake Superior can be classified as offshore; 

77% of the total area is represented by waters greater than 80 m deep (Horns et al., 2003; 

Gorman et al., 2010). Lake Superior oligotrophic, with low concentrations of nutrients and 

concomitant low net primary productivity (Chraibi et al., 2014; Minor et al., 2014). The Lake 

Superior region was covered by the Laurentide ice sheet during the Wisconsinan glaciation 

between 10,000-12,000 years ago, (see Hill, 2007). This glaciation event had major impacts on 

surrounding land formations, which influenced the distribution and evolutionary history of many 

species, including Lake Trout (Salvelinus namaycush, Walbaum 1792) (Behnke, 1972; Martin & 

Olver, 1980; Eshenroder et al., 1995). 

Lake Superior supports a diverse assemblage of fishes (see Bronte et al., 2003). Native 

deep water fishes include (but are not limited to) large predators such as Lake Trout and Burbot 

(Lota lota, Linnaeus, 1758), coregonids such as Kiyi (Coregonus Kiyi, Koelz, 1921), Cisco 

(Coregonus artedi, Lesueur, 1818), Bloater (Coregonus hoyi, Milner, 1874), and Shortjaw 

(Coregonus zenithicus, Jordan and Evermann, 1909), and cottids such as Deepwater Sculpin 

(Myoxocephalus thompsonii, Girard, 1851) and Slimy Sculpin (Cottus cognatus, Richardson, 

1863). Invertebrates commonly found in fish stomachs include Mysis, Diporeia, calanoid 

copepods, Bythotrephes, Daphnia, and benthic dwelling species such as clams and oligochaetes. 
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Non-native species have also been introduced to Lake Superior, including (but not limited to) 

Rainbow Smelt (Osmerus mordax, Mitchill, 1814), Alewife (Alosa pseudoharengus, Wilson, 

1811), and dreissenid mussels.  

 

1.2 A Brief History of Lake Trout Stock Dynamics in Lake Superior 

During the 1800s, Lake Superior supported approximately 70 species of fish, including 

game fishes such as Lake Trout and Lake Whitefish (Coregonus clupeiformis, Mitchill, 1818). 

Commercial fisheries were established in 1830 (Horns et al., 2003), and annual yields between 

1900 and 1940 for these fisheries were high, ranging on average between 5-10 million kg∙y-1 

(Christie, 1974). A combination of over fishing, habitat degradation, and parasitism by Sea 

Lamprey (Petromyzon marinus, Linnaeus, 1758), however, eventually led to sharp declines in 

Lake Trout populations in the mid-twentieth century (Hansen, 1999; Zimmerman & Krueger, 

2009; Bunnell et al., 2014). Between the mid-1950s and 1960s, annual yields of Lake Trout 

declined by 90% in Lake Superior, and similar declines were observed in the other Laurentian 

Great Lakes (Christie, 1974; Hansen, 1999). By 1960, Lake Trout were considered extirpated in 

the Laurentian Great Lakes, save for isolated stocks in Lake Superior and Lake Huron (Hansen, 

1999).  

 The Great Lakes Fishery Commission (GLFC) was established in 1955, and was given 

responsibility for coordinating basin-wide fishery management in the Great Lakes, and 

developing a program to eliminate sea lamprey populations (Horns et al., 2003). Management 

actions included fishery catch limits, control of Sea Lamprey populations, and stocking of 

juvenile Lake Trout (Hansen, 1999). Sea Lamprey populations were culled by targeting larvae 

with the lampricide 4-nitro-3-(trifluoromethyl) phenol (TFM) (Dawson & Jones, 2009), and by 
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1962, Sea Lamprey populations were reduced by an estimated 86% (Nieland et al., 2008). 

Stocking of juvenile Lake Trout began in the 1950s in Lake Superior, with natural reproduction 

being observed as early as 1960 in Keweenaw Bay (Hansen, 1999). Stocking efforts in Lake 

Superior ceased in most areas of the Lake by 1993. Exceptions to this included some Western 

Minnesota, Wisconsin , and Ontario waters; management recommendations for stocking 

cessation had not been met in these areas (see Schreiner & Schram, 1997; Bronte et al., 2003). 

Lake Trout were considered rehabilitated in Lake Superior in 1996 (Schreiner & Schram, 1997). 

Restoration and rehabilitation efforts of Lake Trout stocks in Lake Superior have thus been 

largely successful, with current population numbers approaching those observed pre-collapse 

(Negus, 2010; Cline et al., 2013). However, recent evidence suggests that Lake Trout genetic 

diversity has declined in Lake Superior (Baille et al., 2016). 

 

1.3 Morph Differentiation of Lake Trout  

 The Wisconsinan glaciation during the Pleistocene Era played a major role in the 

distribution and evolutionary history of Lake Trout (Behnke, 1972; Martin & Olver, 1980; 

Eshenroder et al., 1995). Lake Trout are native to post-glacial lakes in North America, but the 

species has since been introduced worldwide (Behnke, 1972). Lake Trout are omnivorous 

predators, and consume a variety of fish and invertebrate prey (Martin & Olver, 1980). Lake 

Trout mature between 4 and 13 years, though this varies depending on prey availability and 

predator abundance (Martin & Olver, 1980; Elrod et al., 1996). Spawning usually occurs during 

fall, though Lake Trout have been observed to spawn in all months between June and January, 

and different stocks of Lake Trout in the same lake may spawn at different times during the year 

(Eschmeyer, 1955; Martin & Olver, 1980; Hansen et al., 2016).  
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 Intraspecific phenotypic plasticity is well-documented within the genus Salvelinus 

(Martin & Olver, 1980; Muir et al., 2015).  Many studies have investigated the ecology of 

sympatric Arctic Charr (Salvelinus alpinus, Linnaeus, 1758) morphs (see Jonsson & Jonsson, 

2001; Reist et al., 2013). Morphs are variants of a species that may differ in morphology, feeding 

ecology, and reproductive spawn times, but are not considered separate species (see Jonsson & 

Jonsson, 2001; Reist et al., 2013). Indigenous peoples observed considerable phenotypic 

diversity in populations of Lake Trout in North America as early as the 1850’s (see Hansen et al., 

2012; Muir et al., 2015). A variety of Lake Trout morphs have since been documented in lakes 

across North America, including in the Laurentian Great Lakes, Great Bear Lake, Great Slave 

Lake, Lake Mistassini, and Rush Lake (Rahrer, 1965; Moore & Bronte, 2001; Zimmerman et al., 

2006; Zimmerman et al., 2007; Chavarie et al., 2013; Muir et al., 2014, Chavarie et al, 2016).  

Morphs of Lake Trout that inhabit the same lake at different depths have been 

documented in many lakes, including Lake Superior (Muir et al., 2014), Lake Mistassini (Hansen 

et al., 2012), Great Slave Lake (Zimmerman et al., 2006), and Great Bear Lake (Blackie et al., 

2003; Alfonso, 2004, Chavarie et al., 2013). Morphs can further be distinguished by 

morphometric features such as head shape, fin insertions, and eye location (Muir et al., 2014), as 

well as other features such as fat content (Eschmeyer & Phillips, 1965; Goetz et al., 2014), diet 

(Harvey et al., 2003), gill raker structure (Martin & Sanderco, 1967), and spawning time 

(Eschmeyer, 1955; Hansen et al., 2016).  

Recent evidence indicates that there is genetic differentiation among morphs of Lake 

Trout (Goetz et al., 2010; Perreault-Payette, 2017). Laboratory breeding experiments have shown 

that leans (a low fat morph) and siscowets (a high fat morph) produce offspring that have 

intermediate lipid content, suggesting lipid metabolism may be genetically influenced 
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(Eschmeyer & Phillips, 1965). Other experiments supporting genetic control of lipid metabolism 

have demonstrated that gene expression related to lipid metabolism and immunity differs 

between leans and siscowets, though expression of these genes may also be influenced by 

environmental factors (Goetz et al., 2010). Rearing experiments have also demonstrated that 

leans and siscowets raised from wild gametes under identical lab conditions maintain 

morphological differences, indicating that these differences are not likely a result of phenotypic 

plasticity (Goetz et al., 2010).  

Lake Superior supports four Lake Trout morphs: “lean”, “siscowet”, “humper”, and 

“redfin” (Moore & Bronte, 2001; Bronte & Moore, 2007; Muir et al., 2014). Compared to the 

other morphs, leans are thinner and more streamlined, have lower tissue lipid content, and are 

most commonly found in waters < 80m (Harvey & Kitchell, 2000; Harvey et al., 2003; Hansen et 

al., 2012). Siscowet Lake Trout have high lipid content and are commonly found in waters > 

80m deep (Goetz et al., 2014). Humpers have an intermediate lipid content (i.e., between that of 

siscowets and leans), relatively slower growth rates, smaller total lengths, and inhabit offshore 

reefs surrounded by mid to deep water > 90m (Rahrer, 1965; Moore & Bronte, 2001; Hansen et 

al., 2012). Redfins are large, slow growing morphs with high buoyancy, but little else is currently 

known about this morph (Muir et al., 2014; Hansen et al., 2016).  

 

1.4 Study Rationale 

 After Lake Trout populations in the Great Lakes collapsed in the 1950s, stocking was 

used as a management tool in restoration efforts (Hansen, 1999). Lake Superior was the fastest if 

the Laurentian Great Lakes to recover from the collapse, with stocking efforts beginning in the 

1950s (Hansen, 1999) and mostly ceasing by 1993 (Bronte et al., 2003). While there has been 
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recent evidence of natural reproduction of Lake Trout in Lakes Huron (Riley et al., 2014) and 

Michigan (Hanson et al., 2013), fisheries managers still depend on stocking to maintain Lake 

Trout populations (Muir et al., 2012). Stocking efforts have historically focused on the lean 

morph, as both contemporary commercial and recreational fishers prefer leans because of their 

low fat content (Eschmeyer & Phillips, 1965; Nieland et al., 2008). More recent management 

practices, however, have included stocking a variety of morphs to maintain genetic diversity and 

to maximize habitat use (Kepler et al., 2014). In 2004, the Great Lakes Fishery Commission 

Lake Erie Committee used a strain of humper morph (“Klondike”) from Lake Superior to stock 

Lake Erie (Markham et al., 2008). The Klondike strain was chosen for stocking purposes 

because of similarities in habitat between Lake Erie and Lake Michigan to the offshore reef areas 

of Lake Superior from which the Klondike form originates (Bronte et al., 2008; Markham et al., 

2008).  

 Trophic ecology of humpers and redfins is poorly understood relative to that of siscowet 

and lean morphs (Hansen et al., 2016). Previous research has shown that although siscowet and 

lean morphs may overlap in their diet (as inferred by stomach contents) by as much as 50% (Ray 

et al., 2007), leans prefer to consume Rainbow Smelt and Cisco (Gamble et al., 2011b), whereas 

siscowet prefer deepwater sculpin and Kiyi (Ray et al., 2007; Gamble et al., 2011a). Stable 

isotope data have also shown that leans and siscowets differ in δ15N and δ13C ratios (Harvey et 

al., 2003). Seasonal variation in diet has also been observed between these morphs; leans appear 

to prefer Rainbow Smelt in spring and fall, and coregonids in summer (Gamble et al., 2011b), 

whereas siscowets prefer Deepwater Sculpin in spring, and coregonids in fall (Gamble et al., 

2011a). Little is known about humper diets (Muir et al., 2015), though it appears that humpers 

retain a planktivorous diet throughout adulthood (Stafford et al., 2014), and thus have a greater 
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overlap in habitat and resource use with juvenile Lake Trout of siscowet and lean morphs 

(Zimmerman et al., 2006; Zimmerman et al., 2009). Little is known about the feeding ecology of 

redfins. 

 With incomplete knowledge of the trophic ecology and potential trophic overlap between 

humpers and other morphs, it is difficult to predict how the effects of anthropogenic stressors and 

invasive species may impact resource partitioning among sympatric morphs. A lack of 

understanding of resource portioning, and ultimately potential competition among morphs, may 

impede Lake Trout restoration and management efforts. The objectives of this thesis were: [1] to 

characterize and compare diets and trophic ecology of sympatric Lake Trout morphs in Lake 

Superior, and [2] to compare trophic niche overlap among morphs. Specifically, I used stomach 

content and fatty acid analyses to compare morph diets, and stable isotope analyses to measure 

differences in trophic position (15N), basal carbon sources (13C), and pelagic-profundal 

consumption (34S) among morphs. I used stable isotope ratios and fatty acid profiles to estimate 

trophic niche size for each morph, and the probability of trophic niche overlap was estimated for 

each pairwise combination of morphs. This research will improve understanding of the ecology 

of sympatric Lake Trout morphs in Lake Superior by complimenting previous stomach content 

with longer signals of integrated resource use, and may be used to inform Lake Trout stocking 

and management practices. 

 

1.5 Description of Chapters  

Due to the importance of understanding diet, trophic relationships, and resource 

partitioning among sympatric morphs of Lake Trout, and the current unavailability of 

information regarding humper and redfin feeding ecology, I investigated trophic ecology and 
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niche overlap among morphs of Lake Trout captured in two locations in Lake Superior. To 

accomplish this, I used a variety of diet tracers, including stomach contents, fatty acids and stable 

isotope ratios of carbon (C), nitrogen (N), and sulfur (S).  

 In Chapter two of this thesis, I characterize the trophic ecology morph using stomach 

content, fatty acid, and stable isotope analysis. For the stomach content analysis, key prey items 

(at the time of capture) were determined through analyzing biomass and count contributions, and 

by calculating Relative Importance Index of each prey item found in stomachs (George & 

Hadley, 1979). Fatty acids identified as indicators of diet were compared among morphs and 

between sites, and results were used to infer contributions of different prey sources to Lake Trout 

diets. Stable isotope ratios were examined to identify inter-morph and inter-site differences in 

trophic position, source contributions of carbon (pelagic vs benthic), and source contributions of 

sulfur (sedimentary vs planktonic). By combining results of these three analyses, I sought to 

determine key prey items and identify differences in trophic ecology among morphs.   

 In chapter three of this thesis, I quantifed probabilistic niche size and niche overlap 

among Lake Trout morphs. Using the R software nicheROVER (Lysy et al., 2014), the 

probability of niche overlap among morphs was calculated using stable isotope tracers and fatty 

acid biomarkers that reflected morph diets. By estimating the probability of niche overlap among 

morphs, I was able to predict which morphs are most likely to share prey resources.  

 

1.6 General Overview of Methods 

1.6.1 Stomach Content Analysis 

 Stomach content analyses allow for a direct, unambiguous, taxonomically precise 

examination of prey ingested by a consumer at the time of capture. Prey items collected from 
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consumer stomachs are typically weighed and counted to determine biomass contributions, 

which can then be used in a variety of analyses to characterize predator diets. The method of diet 

characterization I used was the Relative Importance Index (George & Hadley, 1979). This 

analysis uses percent prey occurrence (%O), percent contribution to total number of prey items 

(%N), and percent contribution to total mass of prey items (%M) to quantify the Relative 

Importance Index for each prey item as: 

 

𝑅𝐼𝑖 = 100 × 
𝐴𝐼𝑖

∑ 𝐴𝐼𝑖
𝑛
𝑖=1

  (Equation 1) 

 

where RIi is the relative importance of the ith prey item, AIi = (%O + %N + %M) for the ith prey 

item, and n is the number of prey items. This method assigns prey items a number between 0 and 

100, with relatively more important prey (i.e., prey most commonly found in gut contents) 

having higher numbers than less important prey. 

 While stomach content analyses have advantages such as high taxonomic resolution, they 

are subject to certain biases. Stomach contents only provide a brief snapshot of recently 

consumed prey, thus temporal trends in diet cannot be determined without multiple sampling 

campaigns (Couturier et al., 2013). Small, easily digestible prey items may not occur as 

frequently in stomachs as larger, more difficult to digest prey items, thus certain prey items may 

be misrepresented in frequency (Couturier et al., 2013). Because of the temporal limitations of 

stomach content analyses, they are often paired with fatty acid or stable isotope analyses. Fatty 

acid and stable isotope analyses provide ~2 months (Happel et al., 2016) and 6-12 months 

(Hesslein et al., 1993) of diet information respectively, and allow for medium- and long-term 

diet trends to be observed (Kirsch et al., 1998; Post, 2002). 
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1.6.2 Fatty Acid Analysis  

Fatty acid signatures can serve as biomarkers of specific food sources that can be used to 

infer predator diets (Elsdon, 2010). Fatty acids reflect the average diet of an organism over a ~2 

month period of time; fatty acid signatures of juvenile Lake Trout changed to reflect feeding on a 

specific prey within an 8 week period (Happel et al., 2016). Fatty acid analyses have been used 

to infer resource partitioning in consumers (Iverson et al., 2001), track seasonal or temporal 

shifts in consumer diet (Bradshaw et al., 2003), identify differences in feeding based on sex 

(Beck et al., 2007), and identify habitat source of prey (Henderson & Tocher, 1987). While many 

fatty acids can be synthesized de novo (Stubing & Hagen, 2003), some fatty acids must be 

obtained from diet. For example, most vertebrates lack enzymes higher than Δ12, inhibiting the 

synthesis of omega-3 fatty acids longer than 15 carbons (Lanca et al., 2011). If diet is the only 

possible source for particular fatty acids (i.e., essential fatty acids), it is possible to use them as 

tracer molecules to obtain information about prey consumption.  

Fatty acids that are commonly used as tracers in freshwater environments include 

polyunsaturated fatty acids (PUFAs), which are synthesized at lower trophic levels by 

phytoplankton (Arts & Wainman, 1999), and monounsaturated fatty acids (MUFAs), which are 

synthesized by some species of zooplankton (Dalsgaard et al., 2003) and/or bacteria (Vlaeminck 

et al., 2006). PUFAs and MUFAs are useful as diet tracers for two reasons. First, specific fatty 

acids within each group can be indicative of specific groups of phytoplankton or zooplankton. 

For example, eicosapentaenoic acid (20:5n-3) is dominant in diatoms (Arts & Wainman, 1999), 

and gondoic acid (20:1n9) and gadoleic acid (20:1n11) are produced by calanoid copepods 

(Dalsgaard et al., 2003). Other indicator fatty acids are stearidonic acid (18:4n3) for 

dinoflagellates (Harrington et al., 1970; Budge & Parrish, 1998), and arachidonic acid (20:4n6) 
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found in red algae (Kirsch et al., 1998). Second, PUFAs and MUFAs are incorporated into 

consumer tissue relatively unchanged, which can be referred to as dietary routing (Hood-

Nowotny et al., 2012). The presence of these FAs in higher organisms such as predatory fish is 

only possible through consumption, allowing for inferences to be made regarding the flow of 

specific fatty acids through a food chain. 

 

1.6.3 Stable Isotope Analysis  

Food web structure and trophic ecology can be examined through analysis of stable 

isotope ratios. Ratios of 15N/14N and 13C/12C are often used in ecology to provide information on 

consumer trophic position and carbon source, respectively. (Deniro & Epstein, 1981; Post, 2002; 

Logan & Lutcavage, 2008). Stable isotopes integrate between 6-12 months of diet information, 

depending on tissue sampled for analysis (Hesslein et al., 1993). The standard delta notation for 

stable isotope ratios is as follows: 

𝛿𝑗𝑋 = [
(

𝑋 
𝑗

𝑋 
𝑖 ) 𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑋 

𝑗

𝑋 
𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1] ×1000 (Equation 2) 

 

where jX is the heavier isotope (e.g., 15N), and iX the lighter isotope (e.g. 14N) in the sample 

(numerator) and international measurement standard (denominator). The standard for nitrogen is 

atmospheric nitrogen, for carbon is Vienna PeeDee Belemnite, and for sulfur is Canyon Diablo 

triolite (see Gonfiantini et al., 1995). Values are reported in parts per mil, denoted by ‰. 

Relative trophic position is routinely inferred from δ15N ratio (Peterson & Fry, 1987), whereas 

carbon and sulfur sources are inferred from δ13C ratios (France, 1995), and δ34S ratios 

(Croisetiere et al., 2009) respectively. 
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Ratios of stable Carbon isotopes can help differentiate relative reliance on benthic vs 

pelagic production, as benthic sources of carbon tend to be enriched ( i.e. less negative), in δ13C 

relative to pelagic sources (France, 1995). This is related to the preference of the photosynthetic 

enzyme rubisco to utilize the lighter 12C isotope (Keeley & Sandquist, 1992). In aquatic 

environments with little mixing (i.e., the littoral or benthic zone), CO2 diffusion is a limiting step 

in photosynthesis, and primary producers will begin to utilize 13C (Keeley & Sandquist, 1992), 

which is reflected in a relatively enriched δ13C ratio. In areas of sufficient mixing (i.e., pelagic 

zone), CO2 is more readily available, and primary producers will continue to discriminate against 

13C (Keeley & Sandquist, 1992). This results in a relatively depleted δ13C ratio in the offshore 

environment. Carbon isotope ratios tend to fractionate (i.e., increase) in fish tissues between 0.4 

and 1‰ between trophic levels (Vander Zanden & Rasmussen, 2001; Post, 2002; Sierszen et al., 

2014), so δ13C ratios of higher trophic organisms tend to reflect that of the primary producers at 

the base of the food chain (Layman et al., 2012).  

Carbon isotope ratios are susceptible to bias in animals with high lipid content, as lipids 

are depleted in δ13C by 6-7‰ (Kiljunen et al., 2006; Hoffman & Sutton, 2010). Many approaches 

have been undertaken to correct for the effects of lipids on δ13C ratios. Mathematical correction 

models are commonly applied with some success (Mcconnaughey & Mcroy, 1979; Fry, 2002; 

Kiljunen et al., 2006). However, it has been advised that developing unique models for each 

system may be the most appropriate way to approach lipid corrections (Logan et al., 2008) 

because of the specificity in lipid dynamics for each species and tissue used (Hoffman et al., 

2015). I used an arithmetic mass balance approach to lipid correction, as described by Hoffman 

(2010). In brief, this method uses C:N ratios of muscle tissue as a proxy for lipid content (Logan 

et al., 2008; Hoffman & Sutton, 2010; Hoffman et al., 2015). A subset of lipid-extracted tissue 
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samples are used to predict C:NExtracted and the isotopic depletion factor from lipids 

(Δδ13CLipid)(Hoffman & Sutton, 2010). Extracted δ13C values are then predicted using the 

following equation: 

𝛿13𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝛿13𝐶𝑏𝑢𝑙𝑘 + [∆𝛿13𝐶𝑏𝑢𝑙𝑘×(
𝐶:𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝐶:𝑁𝑏𝑢𝑙𝑘

𝐶:𝑁𝑏𝑢𝑙𝑘
)] (Equation 3) 

Where δ13Cprotein is the δ13C ratio of the lipid extracted sample, δ13Cbulk is the δ13C ratio of the 

non-extracted sample, Δδ13Cbulk is the isotopic depletion factor due to lipids, C:Nprotein is the C:N 

ratio in the extracted sample, and C:Nbulk is the C:N ratio in the non-extracted sample.  

Stable isotope ratios of nitrogen, δ 15N, are used to determine the relative trophic position 

of consumers (Deniro & Epstein, 1981). The heavier (15N) isotope accumulates in tissue as the 

14N isotope is preferentially excreted, and the ratio of heavy to light isotope increases with each 

trophic transfer (Minagawa & Wada, 1984). Therefore, consumers feeding on lower trophic 

organisms such as plankton or primary producers will have lower δ15N ratios than those feeding 

on higher trophic organisms such as fish or other consumers (Deniro & Epstein, 1981). Nitrogen 

typically has a trophic fractionation of 3-4‰ per trophic level when averaged across whole food 

webs (Post, 2002). 

Stable isotope ratios of sulphur can be used to determine if food web production is 

detrital or pelagic in origin (Croisetiere et al., 2009). The pelagic zone is enriched in δ34S relative 

to the profundal zone, which is a result of bacterial sulphate reduction in sediments (Croisetiere 

et al., 2009). Organisms feeding on benthos have been shown to have δ34S signatures similar to 

the sediments, while those feeding in the pelagic zone have δ34S similar to water column sulfate. 

(Croisetiere et al., 2009; Karube et al., 2012). Sulphur has also been shown to undergo negligible 

fractionation during trophic transfers (<0.5‰) (McCutchan et al., 2003), so consumers tend to 

have δ34S ratios similar to that of the original source of sulphur in the food web. 
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1.6.4 Niche Overlap  

An ecological niche describes the environmental and trophic resources utilized by an 

organism (Hutchinson, 1957; Newsome et al., 2007). Niche overlap among species is common, 

as many species share similar resources such as prey or habitat (Rusterholz, 1981; Arlettaz et al., 

1997; Hodgson et al., 1997; Hasui et al., 2009). Species can tolerate overlap in niche space as 

long as they differ in at least one dimension, thus avoiding competitive exclusion (Hutchinson, 

1957; May & Macarthur, 1972; Pianka, 1974). Trophic niche space can be quantified using 

tracer molecules or biomarkers that reflect niche characteristics, such as stable isotopes or fatty 

acids. Stable isotopes reflect the diet and bases of production for an organism’s diet; nitrogen 

isotopes (δ15N) are used to infer relative trophic position (Deniro & Epstein, 1981), carbon 

isotope (δ13C) are used to infer origin of food web production (benthic vs pelagic) (Deniro & 

Epstein, 1978; France, 1995), and sulphur isotopes (δ34S) are used to discriminate between 

profundal and pelagic sulphate reduction in a food web (see Peterson & Fry, 1987; Croisetiere et 

al., 2009). Fatty acid biomarkers (e.g., MUFAS and PUFAs) can also be indicators of consumer 

diets, and therefore reflect an organism’s trophic niche. (Budge et al., 2007). 

This research focuses on aspects of Lake Trout trophic niche (recognizes that there are 

other niche dimensions that are not trophic in nature). Trophic niche sizes were estimated for 

each morph using methods described in Swanson et al., (2015). Niche region and niche overlap 

between morphs was estimated using a probabilistic method within a Bayesian framework. 

Isotopes and fatty acids were used as indicators of trophic niche. A sample size of 30 Lake Trout 

per morph was analyzed using this method, as 30 is the minimum number of samples shown to 

be necessary for Bayesian comparisons of isotopic niches (Syvaranta et al., 2013).  
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Chapter 2 

 
Trophic ecology of Lake Trout morphs in Lake Superior 

 
2.1 Introduction 

Phenotypic diversity of Lake Trout has been well documented in lakes throughout North 

America, including Great Bear Lake, Great Slave Lake, Lake Mistassini, Rush Lake, and the 

Laurentian Great Lakes (see Krueger & Ihssen, 1995; Blackie et al., 2003; Zimmerman et al., 

2006; Hansen et al., 2012; Chavarie et al., 2013; Muir et al., 2014; Chavarie et al., 2016c). Lake 

Trout morphs differ in physical characteristics such as body shape (Muir et al., 2014), fat content 

(Eschmeyer & Phillips, 1965; Goetz et al., 2014), gill raker structure (Martin & Sanderco, 1967), 

and spawning time (Eschmeyer, 1955; Hansen et al., 2016). Lake Trout morphs also often vary 

in their preferred depth range; shallow water morphs commonly exist in sympatry with 

deepwater morphs (Behnke, 1972). Evidence from previous studies suggests that both habitat use 

and diet could play a role in the differentiation of phenotypic traits in Lake Trout (e.g., Martin & 

Sanderco, 1967; Zimmerman et al., 2006; Eshenroder, 2008; Muir et al., 2014; Chavarie et al., 

2016b). Recent evidence has shown that depth may be a primary influence on the genetic and 

phenotypic diversity that is observed among Lake Trout morphs in Lake Superior (Baille et al., 

2016). However, another recent study has shown that sympatric shallow water morphs exist in 

Great Bear Lake (Chavarie et al., 2013); these morphs were differentiated by head and fin 

characteristics, which have been demonstrated to influence feeding (Proulx & Magnan, 2004; 

Keeley et al., 2005) and swimming (Webb, 1984), as well as trophic ecology as inferred through 

stable isotope and fatty acid data (Chavarie et al., 2016b).  

Lake Superior is the largest of the Laurentian Great Lakes , with a surface area of 82,100 

km2, average depth of 147 m, and maximum depth of 406 m (see Horns et al., 2003). A majority 
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of the Lake Superior environment is offshore, with 77% of total area greater than 80 m deep 

(Horns et al., 2003; Gorman et al., 2010). Lake Superior supports at least four different morphs 

of Lake Trout: “lean”, “siscowet”, “humper”, and the recently described “redfin” (Eschmeyer, 

1957; Muir et al., 2014),  though as many as a dozen morphs have been anecdotally described 

(Goodier, 1981). Leans are streamlined, have relatively low tissue lipid content, and are 

commonly found in waters < 80m (Thurston, 1962; Harvey et al., 2003; Hansen et al., 2012). 

Siscowets, the most abundant morph in Lake Superior (Bronte et al., 2003), are large-bodied, 

have high body lipid content, and are commonly found in waters  > 80m deep (Eschmeyer & 

Phillips, 1965; Sitar et al., 2008; Goetz et al., 2014). Humpers have intermediate lipid content 

relative to leans and siscowets, relatively slower growth rates, and smaller total lengths; they 

inhabit offshore reefs surrounded by mid-to deep water > 90m (Rahrer, 1965; Moore & Bronte, 

2001; Hansen et al., 2012). Redfins are large, slow-growing morphs with high buoyancy, but 

little else is currently known about this morph (Muir et al., 2014; Hansen et al., 2016).  

The 1950s marked a major collapse in Lake Trout populations throughout the Great 

Lakes, due to a combination of overfishing and Sea Lamprey parasitization (Hansen, 1999; 

Zimmerman & Krueger, 2009; Bunnell et al., 2014). Lake Trout of all morphs were extirpated in 

most of the Great Lakes, except for Lake Superior and some areas of Lake Huron (Christie, 

1974; Krueger et al., 1995; Hansen, 1999; Muir et al., 2012). Naturally reproducing populations 

of Lake Trout in Lake Superior have nearly recovered to pre-collapse levels as a result of sea 

lamprey control efforts, fishery catch limits, and stocking (Hansen, 1999; Negus, 2010; Cline et 

al., 2013). Despite similar efforts in the other Great Lakes, stocking is still used to maintain Lake 

Trout populations in Lakes Erie, Ontario, Michigan, and Huron (Muir et al., 2012). Historically, 

leans were the primary Lake Trout morph used for stocking (Eschmeyer & Phillips, 1965; 
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Nieland et al., 2008), but in 2004, a strain of humper originating from Lake Superior (Klondike) 

was used to stock Lake Erie, and in 2008 this strain was recommended for stocking in Lake 

Michigan (Bronte et al., 2008; Markham et al., 2008).  

Due to the role that humpers play in Lake Trout stocking programs and their poorly 

understood trophic ecology, it is difficult to predict how humpers interact with other sympatric 

Lake Trout morphs. The purpose of this research was to compare the trophic ecology of humpers 

to other Lake Trout morphs (i.e., lean, siscowet, and redfin) in Lake Superior, and determine if 

prey, basal production sources, and trophic position differed between humpers and the other 

morphs. Trophic ecology of Lake Trout morphs in Lake Superior was investigated using three 

tracers of diet and trophic ecology that reflect different temporal integration of prey sources 

ranges: stomach content, fatty acid, and stable isotope analyses. Analysis of stomach contents 

allow for a direct examination of prey items with a high degree of taxonomic resolution but very 

low temporal resolution (stomach contents are often used to provide a ‘snapshot’ of an 

organism’s diet)  (Elsdon, 2010). Indirect tracers, such as fatty acids and stable isotope ratios, 

integrate a longer time period of fish diets (~2 and ~6-12 months, respectively) but do not have 

as high degree of taxonomic resolution as stomach contents (Hesslein et al. 1993; Happel et al. 

2016). 

Feeding ecology of leans and siscowets has been well studied (Harvey et al., 2003; 

Gamble et al., 2011a; Gamble et al., 2011b; Stafford et al., 2014). Previous research has shown 

that leans consume mainly pelagic fish, such as Rainbow Smelt and Cisco (Gamble et al., 2011b) 

whereas primary diet items for siscowets include Deepwater Sculpin and Kiyi (Ray et al., 2007; 

Gamble et al., 2011a). In contrast to leans, siscowets also display diel vertical migration 

behaviour, enabling them to capture prey at a variety of depths (Hrabik et al., 2006; Zimmerman 



18 

et al., 2009; Gorman et al., 2012). The feeding ecology of the deepwater humper morph is not 

well characterized, but available data indicate that they maintain a planktivorous diet and have a 

preference for Mysis (Stafford et al., 2014). Feeding ecology of the recently-described redfin is 

poorly understood. This morph has been shown to demonstrate similarities with siscowets in 

terms of fat composition and depth range (Muir et al., 2014), which may suggest that the two 

morphs share similar prey resources, but further research is necessary. Because of the differences 

in prey consumption between leans and siscowets, and the planktivorous diet of humpers, I 

hypothesized that trophic and feeding ecology would differ among morphs of Lake Trout in Lake 

Superior. I predicted that:- i) humper Lake Trout would rely more heavily on Mysis than the 

other morphs, but that there would be prey items in common with siscowets because of their 

overlap in depth; and, ii) that humpers would occupy a lower trophic position than the other three 

morphs, consistent with neotenic retention of a juvenile planktivorous diet. The goal of this 

research was to improve understanding of humper and redfin feeding ecology, and provide 

fishery managers with information that can be used to inform future Lake Trout re-establishment 

programs.  

 

2.2Methods 

 

Study Site and Collection Methods 

Two sites, Superior Shoal (48° 3'43.54" N, 87° 8'52.57" W) and Stannard Rock 

(47°12'26.26" N, 87°12'3.82" W) were sampled in Lake Superior during cruises on the R/V Kiyi 

(Figure 2.1). Most fish and invertebrate samples were collected during summer 2013 and 2014, 

with supplemental prey fishes and invertebrates collected as needed (i.e., to fill in sampling gaps) 

during summer 2015 and 2016. Superior Shoal and Stannard Rock were selected as study sites 

because they were known to support humper, lean, and siscowet Lake Trout morphs; when the 
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study was designed, redfins had not yet been formally described in the literature, and it was not 

known if they would be present at these two sites. 

Lake Trout and a variety of potential prey species, including ciscoes (C. artedi, C. Kiyi, 

and C. hoyi), Deepwater Sculpins, Rainbow Smelt, and invertebrates (Diporeia, Mysis, 

Lepidoptera, gastropods (snails), bivalves (fingernail clams), and zooplankton) were collected 

from each site. Other fishes that have been identified as prey for Lake Trout (i.e., Burbot, Slimy 

Sculpin) (Harvey et al., 2003) were unfortunately not collected in sufficient numbers to be used 

in analyses. Lake Trout were collected via gill nets in 2013 and 2014. Nets were set over night 

(between 12 and 24 hours). Three different depth ranges were sampled, 0-50m (ten nets) 50-

100m (nine nets) and 100-150m (nine nets); these correspond to the depth ranges thought to be 

occupied by the morphs. Gill nets were multifilament nylon twine, 183-m long by 1.8-m high 

with 30.5-m panels ranging from 50.8 to 114.3 mm, in 12.7-mm increments. Prey fishes were 

collected by trawls performed during summer 2013 and 2015. Tows were made along depth 

contours at a vessel speed of ~3.5 km/h with a Yankee bottom trawl (11.9 m head rope, 15.5 m 

footrope, and 2.2 m wing height) with 89-mm, 64-mm, and 13-mm stretched mesh at the mouth, 

trammel and cod end, respectively. Aquatic invertebrates were collected via surface water 

neuston trawls in 2013 and 2014 (Lepidoptera), performed with a Sea-Gear paired 1-m2 neuston 

net with 500-μm mesh. The net was towed 0.5 m below the surface for 10 minutes at 2.5 miles 

per hour. Mysis and zooplankton were collected opportunistically in 2013 and 2014 with a 0.5-m 

diameter plankton net. Collections in separate years were necessary to collect adequate mass for 

fatty acid and stable isotope analyses. Vertical zooplankton tows at Superior Shoal were 

performed from 130 m depth to surface and 60 m depth to surface. Vertical zooplankton tows at 

Stannard Rock were performed from 60 m to surface and 20 m to surface. Mesh sizes were 500 
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μm for Mysis and 153μm for zooplankton. Upon collection, a subset of zooplankton samples 

were sorted into two different size fractions, 63-250 μm, and 250-500 μm, and preserved in 

ethanol for laboratory identification of species composition. The remaining zooplankton were 

frozen in a small amount of water for fatty acid and stable isotope analysis. The 63-250-μm 

fraction was determined to be composed mostly of Diaptomus sp., whereas the 250-500-μm 

fraction was composed mostly of Limnocalanus marcrurus (G.O. Sars, 1863). Benthic 

invertebrate samples were collected in 2013 and 2014 with a standard 0.05-m2 Ponar dredge, at a 

depth of 60 m at Superior Shoal and 80 m at Stannard Rock. Sediments were rinsed and sieved 

with 500-μm mesh using an elutriator.  

Total length (mm), wet weight (g), sex, and maturity for each Lake Trout were 

determined upon capture. Dorsal, skinless muscle samples were removed from each Lake Trout 

for stable isotope and fatty acid analyses. Stomachs were removed from each Lake Trout and 

frozen. Prey fishes captured in the trawl were identified, and a subsample were measured and 

weighed before being frozen whole. Total length (mm), wet weight (g), sex and maturity were 

determined for individual prey fishes in the laboratory prior to use in stable isotope and fatty acid 

analyses. Invertebrate samples were coarsely sorted (to Order or Family) while on the ship and 

frozen in scintillation vials. Because determination of morphs is sensitive to fish size 

(Zimmerman et al., 2006) only Lake Trout > 300 mm in total length were analyzed further.  

  

Assignment of Lake Trout Morphs 

 Morphometric analysis (Perreault-Payette, 2016) and visual identification (performed by 

A. Muir, C. Krueger, and C. Bronte) were used to assign each captured Lake Trout (> 300 mm 

total length) to a morph. Lateral photographs of each fish were used to quantify body and head 

shape via geometric morphometrics (Muir et al., 2014). These digitized points were analyzed 
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using the MCLUST R package (Fraley & Raftery, 2009), which assigned individual fish a morph 

identity based on the head and body models. Three visual assignments per fish were generated by 

three experienced researchers: Charles Bronte (U.S. Fish and Wildlife Service), Andrew Muir 

(Great Lakes Fishery Commission), and Charles Krueger (Michigan State University). At least 

two of the three visual assignments had to agree for a fish to be given a visual identification. The 

visual identifications were then compared with results of morphometric models. If two of the 

three of the assignments (visual, head, and body) agreed, the fish was given a morph assignment. 

If none of the models agreed, the fish was not assigned a morph and excluded from further 

analysis.  

This dual method of morph identification was employed for all morphs except humper, 

due to their smaller sizes at maturity. Sensitivity of morphometric analysis is decreased for fish 

less than 430 mm (Zimmerman et al., 2006), and mean size at maturity of humpers is ~450 mm 

(Hansen et al., 2016); therefore, in the case of humpers, only visual identifications were used. 

Out of 901 Lake Trout captured, 419 were assigned a morph identification.  

 

Stomach Content Analysis 

Stomach content analysis was led by M. Vinson (United States Geological Survey Great 

Lakes Science Center). Stomachs were weighed, dissected, and the contents were coarsely sorted 

into taxonomic groups and counted. Each taxonomic group was weighed  to determine 

contribution to total biomass (in grams). Contents were then rinsed, frozen and saved for use in 

stable isotope analysis (necessary for taxa where adequate directly-sampled organisms were not 

available). Fish were classified into categories of coregonids, salmonids, sculpins, sticklebacks, 

smelt, burbot, and unidentified. Invertebrates were classified into categories of Mysis, Diporeia, 
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other aquatic, and terrestrial. Unidentified items such as rocks, plastics, and detritus were 

weighed, but not included in the analysis. 

A total of 419 Lake Trout stomachs were analyzed, representing all Lake Trout that 

received a morph assignment. Stomach contents were analyzed using the Relative Importance 

Index (George & Hadley, 1979). Percent prey occurrence (%O), percent contribution to total 

number of prey items (%N), and percent contribution to total mass of prey items (%M) were 

calculated, and the Relative Importance Index for each prey item was quantified as: 

 

𝑅𝐼𝑖 = 100 × 
𝐴𝐼𝑖

∑ 𝐴𝐼𝑖
𝑛
𝑖=1

     (Equation 1) 

 

where RIi is the relative importance of the ith prey item, AIi = (%O + %N + %M) for the ith prey 

item, and n is the number of prey items. This assigns each prey item a percentage between 0 and 

100, with relatively more important (i.e., prey most commonly found in gut contents) prey 

having higher numbers than less important prey. 

 

Fatty Acid Analysis 

Lipids were extracted using a modified Folch method (Folch et al., 1957; Budge et al., 

2006). Freeze-dried skinless dorsal muscle tissue was used for Lake Trout, whereas freeze-dried 

whole bodies were used for prey fishes and invertebrates. All samples were homogenized and 

ground prior to extraction. Approximately 0.2 g of tissue was treated with a 2:1 chloroform-

methanol solution containing 0.01% butylated hydroxytoluene (BHT) (v/v/w) and refrigerated 

overnight. The lipid phase was then separated, dried with anhydrous sodium sulphate and 

evaporated under nitrogen to obtain total lipid mass. Fatty acid methyl esters (FAMEs) were 

produced from extracted lipids by transesterification with Hilditch reagent (100:1 parts dry 

methanol to H2SO4 v/v) (Morrison & Smith, 1964). Samples were heated to 100°C for 1 hour, 
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back extracted with hexane and dried with anhydrous sodium sulphate. The FAME layer was 

removed and evaporated under nitrogen until dry and weighed. Finally, FAMEs were diluted in 

hexane to a concentration of 0.20mg/mL. 

 FAMEs were analyzed at the Freshwater Institute (Winnipeg, Manitoba). Gas 

chromatographic (GC) analysis was performed on an Agilent Technologies 7890N GC equipped 

with a 30-m J&W DB-23 column (0.25-mm I.D; 0.15-μm film thickness). The GC was coupled 

to a Flame Ionization Detector (FID) operating at 350 oC. Hydrogen was used as carrier gas 

flowing at 1.25 mL/min for 14 minutes and ramped to 2.5 mL/min for the remainder of the run. 

The split/splitless injector was heated to 260 oC and run in splitless mode with a 50 psi pressure 

pulse for 1.25 minutes. The oven program was as follows: 60 oC for 0.66 min; 22.8 oC/min to 

165 oC with a 2.0 min hold; 4.7 oC/min to 174 oC and 7.6 oC/min to 200 oC with a 6 min hold. 

Peaks were quantified using Agilent Technologies ChemStation software. Fatty acid standards 

were obtained from Supelco (37 component FAME mix) and Nuchek (54 component mix GLC-

463). Eighty FAMEs were identified via retention time and known standard mixtures and are 

reported as percent of total fatty acid. Each fatty acid is described using the shorthand 

nomenclature of A:Bn-X, where A represents the number of carbon atoms, B the number of 

double bonds and X the position of the double bond closest to the terminal methyl group. Fatty 

acids are reported as % total FAME content. A total of 210 Lake Trout samples (30 per morph 

per site) and 108 prey fishes (15 per species per site, except Rainbow Smelt) were analyzed for 

fatty acids. Because of mass limitations, Rainbow Smelt, and all invertebrate samples were 

pooled and analyzed in replicates, ranging from 2-5 reps depending on mass availability (Table 

2.1). 
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Stable Isotope Analysis 

Samples from 210 Lake Trout (30 per morph per site, excluding redfins from Stannard 

Rock; low sample size precluded analysis of redfins at Stannard Rock), and 120 prey fishes 

(fifteen per species per site) were analyzed for δ13C, δ15N, and δ34S. Kiyi and Deepwater Sculpin 

were the only prey fishes collected at Superior Shoal, so analysis of prey fishes was limited to 

these two species (Table 2.1). Lake Trout dorsal muscle samples (skin off) were freeze dried and 

ground into a fine powder before being weighed for stable isotope analysis (SIA). The remaining 

fish species and invertebrates were freeze dried whole and ground prior to weighing. Prey fishes 

larger than 150 mm were homogenized by blender before freeze drying to ensure even drying 

and grinding of the tissue. Homogenates of several individual invertebrate samples were pooled 

together by taxa to ensure adequate sample mass. Samples were analyzed in replicates of 5 per 

taxa per site for δ13C and δ15N, and replicates of 3 per taxa per site for δ34S. Due to mass 

limitations, fingernail clams were not analyzed for δ34S isotopes at either site. Snails, moths, and 

clams were not analyzed from Superior Shoal because they could not be collected at that site 

(Table 2.1).  

 Ratios of stable carbon and nitrogen isotopes were determined at the University of 

Waterloo Environmental Isotopes Laboratory (UWEIL) on a 4010 Elemental Analyzer (Costech 

Instruments) coupled to a Delta XL (Thermo-Fisher) continuous flow isotope ratio mass 

spectrometer (CFIRMS). Sulfur isotopes were analyzed on a 4010 Elemental Analyzer (Costech 

Instruments) coupled to an Isochrom (GVInstruments / Micromass UK) CFIRMS. Isotope ratios 

are reported in δ notation, which is calculated as: 

𝛿𝑗𝑋 = [
(

𝑋 
𝑗

𝑋 
𝑖 ) 𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑋 

𝑗

𝑋 
𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1] ×1000 (Equation 2) 
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where jX is the heavier isotope (e.g., 15N), and iX the lighter isotope (e.g., 14N) in the sample 

(numerator) and international measurement standard (denominator). Atmospheric nitrogen is the 

standard for δ15N, Vienna PeeDee Belemnite for δ13C, and Canyon Diablo triolite for δ34S (see 

Gonfiantini et al., 1995). All values are reported in parts per mil (‰). Analytical error for δ13C, 

δ15N, and δ34S did not exceed 0.2‰, 0.3‰, or 0.3‰ based on corrections made using an array of 

international reference material and in-house standards that were calibrated using certified 

international reference materials (i.e. IAEA-N1 + N2, IAEA-CH3 + CH6, USGS-41 + 41, IAEA-

SO-5, IAEA-SO-6, NBS-127, NBS-123, IAEA-S1 to-S3). Of the total sample number analyzed 

in an analytical run, no less than 20% were Std/Ref materials. Repeatability of samples (one in 

10) for δ13C, δ15N, and δ34S was 0.2‰, 0.3‰, and 0.3‰. 

 

Lipid Correction Models 

As lipids are depleted in δ13C (Kiljunen et al., 2006; Hoffman & Sutton, 2010), lipid 

correction models were used to correct Lake Trout and prey δ13C values for effects of lipid bias. 

A correction equation (see Appendix I) was developed based on mass balance models presented 

by Hoffman and Sutton (2010), and applied to individuals of all morphs/species with C:N ratios 

> 4.0, which was used as the minimum C:N ratio to perform lipid corrections as recommended 

by Hoffman et al. (2015). Delta13C ratios for Diporeia, snails, and clam samples were not 

corrected for effects of lipid, as low sample mass precluded lipid extractions. Delta13C ratios for 

Rainbow Smelt were also not corrected for effects of lipid, as all Rainbow Smelt samples had 

C:N ratios < 4.0. Lipid corrected δ13C values were estimated as follows: 

 

𝛿13𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝛿13𝐶𝑏𝑢𝑙𝑘 + [∆𝛿13𝐶𝑏𝑢𝑙𝑘×(
𝐶:𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝐶:𝑁𝑏𝑢𝑙𝑘

𝐶:𝑁𝑏𝑢𝑙𝑘
)] (Equation 3) 
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Where δ13Cprotein is the δ13C ratio of the lipid extracted sample, δ13Cbulk is the δ13C ratio of the 

non-extracted sample, Δδ13Cbulk is the isotopic depletion factor due to lipids, C:Nprotein is the C:N 

ratio in the extracted sample, and C:Nbulk is the C:N ratio in the non-extracted sample. Δδ13Cbulk 

and C:Nprotein were estimated for each morph and species that had C:Nbulk  > 4.0 at each site (see 

Appendix I for model selection methods). Superior Shoal leans and Stannard Rock humpers each 

had 2 outliers (leans: Δδ13Cbulk=-17.8‰, -268.7‰; humpers: Δδ13Cbulk = -28.9‰, -30.0‰) that 

were not included in calculating average Δδ13Cbulk or C:Nprotein, as these values were ~2-4 times 

larger than the literature values reported for Δδ13Cbulk of ~7 (Kiljunen et al., 2006; Hoffman & 

Sutton, 2010). Because there was only one lipid extracted value determined for each pooled 

invertebrate sample, lipid correction equations were not applied to invertebrates; the measured 

lipid-extracted δ13C ratios were used in analyses. 

 

Statistical Analyses 

Statistical analyses (significance level α=0.05) were conducted using R software version 

3.3.1 (R Core Team, 2016). Sexes were combined for analysis because there were no significant 

differences between sexes in length (t-test, t1,204=-1.117, p=0.266), weight (t-test, t1,204=-1.393, 

p=0.165), isotope ratios (t-test, Carbon: t1,204=-0.111, p=0.912, Nitrogen: t1,204=-0.282, p=0.779, 

Sulfur: t1,204=1.009, p=0.314) or fatty acid concentrations (Hotelling Test, Hotelling T=0.218, 

df=1,202, p=0.148). Stable isotope ratios were used to identify differences in trophic ecology 

among Lake Trout morphs. δ13C and δ34S ratios were used to address differences in basal 

production sources (pelagic-littoral and profundal-pelagic respectively) among Lake Trout 

morphs. δ15N ratios were used to investigate differences in trophic position differences among 

morphs. Stable isotope data were analyzed using general linear models to determine if significant 
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differences occured among morphs and between sites. After each analysis, residual plots were 

tested for normality using a Shapiro Wilk test, while Levene’s test was used to examine 

homogeneity of variances.  

Linear discriminant analysis (LDA) was performed on fatty acid data (Table 2.2). LDAs 

were performed three times at each site; the first time used all 70 fatty acids that were quantified, 

the second used 30 fatty acids that are known dietary biomarkers, and the third used 40 fatty 

acids that are not used as biomarkers, or are known to be affected by processes other than diet 

(i.e., metabolism) (Table 2.2). Prior to analysis, fatty acid concentrations were logit transformed 

(log(p/1-p) to normalize the data, and scaled and centered using a z-score transformation (z=x-

µ/σ). A Wilk’s lambda test was performed to determine which LDA axes were significant. After 

the LDA that used dietary fatty acids was performed, an ANOVA was conducted to determine if 

LDA scores from significant axes differed among morphs; morphs with similar fatty acid 

profiles (as indicated by overlap from the LDA plots) were inferred to have similar diets.  

Finally, qualitative interpretation of results was accomplished using fatty acid-specific loading 

scores onto significant axes. 

 

2.3 Results 

Stomach Content Analysis 

 Of the 419 Lake Trout analyzed for stomach contents, siscowets were the most abundant 

whereas humpers were the least abundant (Table 2.1). Figure 2.2 shows the count and biomass 

composition of Lake Trout stomachs that were analyzed. Fish contributed the most to total 

stomach biomass for all morphs except humpers at Stannard Rock. For humpers, Mysis 

contributed the greatest proportion to stomach content biomass (43% and 57% of total stomach 
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biomass at Superior Shoal and Stannard Rock respectively). Mysis contribution (in terms of 

biomass) was lower for each of the other Lake Trout morphs at both sites. Invertebrates 

comprised a larger proportion of Lake Trout stomach biomass at Stannard Rock compared to 

Superior Shoal (Figure 2.2).  

The ‘fish’ category in stomachs was further broken down into species, where possible 

(Figure 2.3). Coregonids contributed the most to stomach content biomass for leans at both sites, 

though Deepwater Sculpin were also identified in lean stomachs at Stannard Rock. Coregonids 

also contributed the most fish biomass to siscowet stomachs at Stannard Rock, with a smaller 

contribution from Deepwater Sculpin. However, at Superior Shoal, Burbot were the highest 

biomass contributors to siscowet stomachs, followed by coregonids. At both sites, Deepwater 

Sculpin were the only identifiable fish found in humper stomachs, and accounted for > 50% of 

fish biomass in humper stomachs. Burbot and coregonids were the dominant biomass 

contributors to redfins stomachs, with a small contribution by Deepwater Sculpin. However, as 

shown by the count data, most of the fish species observed in stomachs were too degraded to be 

identified; of 128 fish counted in all the Lake Trout stomachs, only 40 were identifiable.  

In terms of counts, Mysis was the highest contributing prey item for all morphs at both 

sites, followed by ‘other invertebrates’ (Figure 2.2). Diporeia and fish eggs were the two lowest 

contributing prey items to both count and biomass, and were rarely observed in Lake Trout 

stomachs.  

Analyses of the Relative importance index indicated that order of importance of prey 

categories was (most to least) Mysis, fish, invertebrates, eggs, and Diporeia (Table 2.3). Mysis 

was the most common prey item in the stomachs of all morphs at both sites. Fish prey was 

slightly less common for humpers than for the other morphs. Invertebrates were more common at 
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Stannard Rock compared to Superior Shoal (all morphs). Diporeia and fish eggs were the least 

common prey items for all morphs at both sites. 

 

Fatty Acid Analysis 

 

Seventy fatty acids were quantified using GC-FID. Linear discriminant analyses (LDA) 

were performed separately at each site, using: i) data from all 70 fatty acids; ii) fatty acids known 

to be tracers of diet (30 fatty acids); and, iii) fatty acids known to reflect metabolism or not 

known to be tracers of diet (or both; 40 fatty acids) (Table 2.2). Axis loadings for individual fatty 

acids (up to 10 for each function) can be found in Table 2.4. All raw fatty acid data are presented 

in Appendix I.  

At Superior Shoal, the first two discriminant functions were significant (DF Axis 1 Wilks 

Lambda=0.018, df=210, p<0.001; DF Axis 2 Wilks Lambda=0.112, df=138, p=0.011), and these 

two functions resulted in good separation of the four known morphs (Figure 2.4a). The first LDA 

axis explained 56.9% of observed variation in fatty acid signatures, and the second LDA axis 

explained 26.8% of observed variation. The total misclassification rate (of individuals to the 

correct morph) for the model was 5.8%. At Stannard Rock, only the first discriminant function 

was significant (DF Axis 1 Wilks Lambda=0.16, df=140, p<0.001; DF Axis 2 Wilks 

Lambda=0.186, df=69, p=0.059). The first axis explained 70.5% of observed variation, and 

separated the fish into the three known morphs (Figure 2.4b). The total misclassification rate for 

this model was 0%.  

When only 30 fatty acids that are known dietary biomarkers (Table 2.2) were used, the 

first discriminant function was significant at Superior Shoal (DF Axis 1 Wilks Lambda=0.253, 

df=90, p=0.001), explained 61.8% of observed variation, and separated Lake Trout into roughly 

three groups; the first group contained leans, the second contained humpers and siscowets, and 
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the third contained redfins (Figure 2.4b). There were significant differences in LD1 scores 

among morphs (ANOVA, F3,116=44.62, p=<0.001). A post-hoc Tukey’s test showed that redfins 

had significantly higher LDA scores compared to the other three morphs, and siscowets and 

humpers had significantly higher LDA scores compared to leans (Tukey HSD, p=<0.05). Based 

on this analysis, the diets of humpers and siscowets were most similar, whereas those of lean and 

redfin were most different. The total misclassification rate for the model was 27.5%.  

An LDA on these same 30 fatty acids for Lake Trout from Stannard Rock showed again 

that the first discriminant function was significant (DF Axis 1 Wilks Lambda=0.272, df=60, 

p=0.003), accounted for 64.9% of observed variation, and separated the morphs into roughly 

three groups (no redfins at Stannard Rock). There were significant differences in LD1 scores 

among morphs (ANOVA, F2,87=52.98, p=<0.001). A post-hoc Tukey’s test showed leans had 

significantly higher LDA scores compared to siscowets, and siscowets had significantly higher 

LDA scores compared to humpers (Tukey HSD, p=<0.05). This analysis thus indicated that the 

diets of siscowets and leans were most similar, whereas the diets of humpers and leans were 

most different. The total misclassification rate for this model was 23.3%. (Figure 2.5b).  

A third LDA was performed on the fatty acid profiles of Lake Trout morphs to examine 

how non-dietary fatty acids differ among morphs (Figure 2.4c, 2.5c). These fatty acids helped 

separate siscowets from humpers at Superior Shoal (Figure 2.4c), and contributed to separation 

of all three groups at Stannard Rock (Figure 2.5c).  

To aid in interpretation of analyses performed using known diet tracers (Figure 2.4b), 

ordinations of fatty acids with the highest loading scores were plotted with results of Lake Trout 

LDAs in Figures 2.4d and 2.6d. At Superior Shoal, known markers of bacteria (17:0 and 15:1n6; 

Table 2.4) and diatoms (16:2n4, 20:5n3; Table 2.4) contributed to the separation of redfins from 
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leans (Figure 2.4d; Table 2.4). Analyses of fatty acid signatures of prey items revealed that the 

20:5n3 marker of diatoms was most concentrated in Mysis (Figure 2.4d, Appendix I). The 

siscowet/humper grouping at Superior Shoal was separated from the lean grouping by the 

zooplankton markers 18:1n7 and 18:4n3 (Table 2.4) being more closely aligned with siscowets 

and humpers, and an algal (16:2n6) and an algal/terrestrial (18:3n3) marker being more closely 

aligned with leans (Table 2.4, Figure 2.4d). The known zooplankton markers 18:1n7 and 18:4n3 

were most concentrated in Deepwater Sculpin and zooplankton captured for this study, 

respectively, and the algal/terrestrial 18:3n3 marker was most concentrated in zooplankton 

(Figure 2.4d, Appendix I). An algal (20:4n6; most concentrated in Mysis in this study) and a 

bacteria (15:0; most concentrated in zooplankton in this study) marker contributed to separation 

of the siscowet/humper grouping from the redfin grouping (Table 2.4, Figure 2.4d).  

At Stannard Rock, markers of zooplankton (20:1n11, 20:1n9), and diatoms (16:1n7) 

contributed to the separation of leans from humpers, whereas markers of bacterial (15:0, 17:0), 

zooplankton (18:4n3), and terrestrial (18:3n3) dietary sources separated siscowets from humpers 

(Table 2.4, Figure 2.5d). Leans and siscowets were best separated by diatom (16:2n4, 20:5n3), 

and terrestrial (18:2n6) markers (Table 2.4, Figure 2.5d). Analyses of fatty acid signatures in 

prey sources showed moths had the highest concentrations of terrestrial markers (18:3n3, 

18:2n6) (Figure 2.5d, Table 2.4, Appendix I). The diatom marker 16:1n7 was most concentrated 

in Deepwater Sculpin whereas, similar to Superior Shoal, the diatom marker 20:5n3 was most 

concentrated in Mysis. The known bacterial 15:0 and 17:0, and the zooplankton marker 18:4n3 

were found in highest concentrations in zooplankton. 
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Stable Isotope Analysis 

Carbon Isotopes 

A two-way analysis of variance compared lipid corrected (adjusted) δ13C isotope ratios 

between sites and among Lake Trout morphs (Table 2.5). Differences in adjusted δ13C ratios 

occurred among morphs in the overall ANOVA (ANOVA, F2,177=3.263, p=0.041), but a post-hoc 

Tukey’s honest significance test showed no pairwise differences (Tukey HSD, p>0.05). This 

seeming incongruity is because the Tukey’s HSD test is corrected for multiple comparisons. 

There were no differences between sites (ANOVA, F1,176=1.278, p=0.260), and no interactions 

between morph and site (ANOVA, F2,174=1.171, p=0.183). 

A within site analysis of adjusted δ13C isotope ratios was also performed for Superior 

Shoal because the two-way ANOVA did not include redfins (only captured at Superior Shoal),. 

No significant differences in δ13C ratios among morphs was detected at Superior Shoal 

(ANOVA, F3,116=1.311, p=0.274). This is consistent with the low range of δ13C ratios among 

morphs, which was only 0.26 per mil at Superior Shal, and 0.49 per mil at Stannard Rock (Table 

2.5). 

 

Nitrogen Isotopes 

A two-way analysis of variance compared δ15N ratios between sites and among Lake 

Trout morphs (Table 2.5). Delta15N ratios varied between sites (ANOVA, F1,174=4.092, p=0.045) 

and among morphs (ANOVA, F2,174=4.628, p=0.011). The interaction term between morph and 

site was also significant (ANOVA, F2,174=5.246, p=0.006). The interaction could indicate that 

between-site differences were not driven by differences in baseline, as one site was not 

consistently enriched or depleted in δ15N compared to the other. A post-hoc Tukey’s HSD test 
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showed that Superior Shoal humpers were enriched in δ15N compared to Superior Shoal 

siscowets (Tukey HSD, p<0.05) and Stannard Rock leans (Tukey HSD, p<0.05). Stannard Rock 

siscowets were enriched compared to Stannard Rock leans (Tukey HSD, p<0.05) (Table 2.5). 

Ratios of stable nitrogen isotopes were not corrected for possible differences in baseline 

between the two sites for a number of reasons. First, there is high variability in δ15N ratios for 

small primary consumers with high turnover rates, and an appropriate long-lived (and therefore 

less sensitive to seasonal variation in δ15N ratios) primary consumer (e.g., fingernail clams) was 

not captured at both sites. Second, baseline corrections are appropriate for comparisons where 

basal δ15N ratios are highly variable (e.g., Cabana and Rasmussen, 1996). Superior Shoal and 

Stannard Rock are both oligotrophic environments (in the same lake) with relatively low 

anthropogenic inputs, and thus these sites should not differ substantially in baseline δ15N. 

However, to account for possible unaccounted variation in baseline δ15N ratios between sites,, I 

ran a mixed effects model on Lake Trout δ15N ratios where site was a random factor. Delta15N 

ratios differed among morphs (fixed factor) (ANOVA, F2,176=4.503, p=0.0124). A post-hoc test 

showed that humpers were significantly enriched in δ15N compared to leans (Tukey HSD , 

p=>0.05), but the absolute difference in mean δ15N was only ~ 0.4 per mil between these two 

morphs. 

Within site analysis of δ15N isotope ratios (allowed redfins to be included at Superior 

Shoal) indicated significant differences in δ15N among morphs at Superior Shoal (Table 2.5) 

(ANOVA, F3,116=5.285, p=0.002) and Stannard Rock (Table 2.5) (ANOVA, F2,87=4.957, 

p=0.009). At Superior Shoal, humpers (Tukey HSD, p<0.5) and redfins were enriched in δ15N 

compared to siscowets (Tukey HSD, p<0.5). At Stannard Rock a different pattern was found; 

siscowets were enriched in δ15N compared to leans (Tukey HSD, p<0.05). 
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Although there were statistically significant differences between sites and morphs in 

δ15N, absolute variation in δ15N was low. Mean δ15N varied from 10.02 in leans from Stannard 

Rock to 10.84 in redfins from Superior Shoal (Table 2.5). This range (0.82) represents less than a 

third of a trophic level, and is likely not ecologically relevant.  

 

Sulfur Isotopes 

 A two-way analysis of variance compared δ34S ratios between sites and among morphs 

(Table 2.5). δ34S differed among morphs (ANOVA, F2,174=9.406, p=<0.001), but the interaction 

between morph and site was also significant (ANOVA, F3,174=23.129, p=<0.001). A post hoc 

Tukey’s HSD test showed that leans from Superior Shoal were enriched in δ34S compared to all 

other morphs (Tukey HSD, p<0.05), whereas humpers from Stannard Rock were enriched 

relative to siscowets and leans from Stannard Rock (Tukey HSD, p<0.05). Sites did not differ in 

δ34S (ANOVA, F1,174=2.098, p=0.149). 

Within site analysis of δ34S isotope ratios (redfins included from Superior Shoal) 

indicated differences in δ34S among morphs at both Superior Shoal (Table 2.5) (ANOVA, 

F3,116=19.004, p=<0.001) and Stannard Rock (Table 2.5) (ANOVA, F2,87=11.911, p<0.001). 

Within Superior Shoal, a post-hoc Tukey’s test showed leans and redfins were enriched in δ34S 

compared to humpers and siscowets (Tukey HSD, p=<0.05). Within Stannard Rock, a post hoc 

Tukey’s test showed humpers were enriched in δ34S compared to leans and siscowets (Tukey 

HSD, p=<0.05). The absolute difference in mean δ34S ratios among morphs and sites, was small, 

however (max difference was 0.9 per mil), and thus differences are likely not ecologically 

relevant. 
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Qualitative Bivariate Analysis of Stable Isotope Data  

Stable isotope biplots (δ15N vs δ13C and δ34S vs δ13C) were created for each site and 

examined qualitatively (Figure 2.6 and 2.7). Particular attention was paid to prey fishes and 

invertebrate taxa, which were not included in the statistical analyses above. When comparing 

organisms that were captured at both sites, zooplankton (as expected) had the lowest δ13C ratios, 

whereas Lake Trout had the highest δ13C ratios. However, clams had the lowest δ13C ratios and 

snails had the highest δ13C ratios at Stannard Rock. Note that benthic end member, such as 

snails, were not sampled at Superior Shoal (Figure 2.6). The range of δ13C ratios was 3.85 and 

3.63 per mil at Superior Shoal and Stannard Rock, respectively, when only organisms that were 

captured at both sites are included. When snails and clams are included at Stannard Rock, the 

range of δ13C ratios was 6.59 per mil (Figure 2.6 and 2.7).  

Lake Trout had the highest δ15N at both sites, indicating, as expected, that they occupy 

the highest trophic position. However, the range of δ15N ratios was much higher at Stannard 

Rock than Superior Shoal (8.54 vs 4.30) (Figure 2.6 and 2.7). This is because the small size 

fraction of zooplankton (63-250 µm) had much higher δ15N at Superior Shoal than at Stannard 

Rock. At Stannard Rock, the community composition of the small zooplankton size fraction was 

dominated by Diaptomus sp., and the large size fraction was dominated by Limnocalanus 

marcrurus. 

The range of δ34S ratios at Superior Shoal and Stannard Rock was similar when 

calculated using organisms captured at both sites (2.61 and 2.08 per mil, respectively) (Figure 

2.6 and 2.7). In general, Diporeia had the highest δ34S ratios at both sites, whereas zooplankton 

had the lowest δ34S ratios. Sediment and water column δ34S ratios are not yet available, and 
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without data from these two important endmembers, it is difficult to interpret differences in δ34S 

ratios among organisms or between sites.  

 

2.4 Discussion 

Stomach Contents and Prey Importance 

Results from this study indicate that Lake Trout morphs differ in prey consumption, and 

these differences vary between sites. Fishes were the dominant prey items for all Lake Trout 

morphs (excluding humpers) in terms of biomass, ranging between 54%-88%, which is similar to 

what has been observed for siscowets and leans in previous studies (e.g., Zimmerman et al., 

2009; Gamble et al., 2011a; Isaac et al., 2012). Previous stomach content data from Lake 

Superior (Gamble et al., 2011a) have shown that lean diets are largely comprised of Rainbow 

Smelt, Cisco, and Slimy Sculpin (Harvey & Kitchell, 2000; Harvey et al., 2003), whereas 

siscowet diets are dominated by Deepwater Sculpin and coregonids (e.g., Kiyi and Bloater) 

(Harvey & Kitchell, 2000; Harvey et al., 2003; Gamble et al., 2011a). Lake Trout undergo an 

ontogenetic shift in feeding at approximately the size of maturity (430 mm) (Zimmerman et al., 

2009). Small siscowets, for example, feed primarily on Mysis, and switch to feeding on 

Deepwater Sculpin as they grow larger (Isaac et al., 2012). Mysis biomass in stomachs of leans 

and siscowets > 400mm has been observed to be < 20% (Gamble et al., 2011a; Gamble et al., 

2011b; Isaac et al., 2012), which I observed in all morphs except humpers. Humpers are known 

to maintain foraging behaviour on Mysis that is similar to juveniles of all morphs (Stafford et al., 

2014), and my observations support this previously-reported neotenic feeding habit. Mysis 

biomass contribution to humper diets was 42% at Superior Shoal and 56% at Stannard Rock, 

which is similar to what has been observed in juvenile siscowet stomachs (Isaac et al., 2012). 



37 

The greater consumption of Mysis by humpers suggests their diets are more planktivorous, 

whereas the other morphs are more piscivorous, indicating that the trophic ecology of humpers 

differs from the other Lake Trout morphs in Lake Superior. 

Further analysis of fishes in Lake Trout stomachs showed that lean diets were dominated 

by coregonids at both Stannard Rock and Superior Shoal, siscowets consumed mostly coregonids 

at Stannard Rock and Burbot at Superior Shoal, humpers consumed Deepwater Sculpin at both 

Stannard Rock and Superior Shoal, and redfins consumed mostly Burbot and coregonids. These 

observations agree with previous studies of lean and siscowet stomach contents (e.g., Ray et al., 

2007; Gamble et al., 2011a; Gamble et al., 2011b), though in contrast to Ray et al., (2007) and 

Gamble et al., (2011b), no Rainbow Smelt were identified in lean stomachs. The presence of 

Deepwater Sculpin in humpers stomachs, although not directly observed before, is expected as 

these two species overlap in depth (Selgeby, 1988). Deepwater Sculpin are also a suitable prey 

for humpers due to their small size. Humpers are a relatively small Lake Trout morph, therefore, 

they are likely gape-limited in the size of prey they can consume (Hambright, 1991).  

At the time this study was conceived, the redfin morph was not yet formally described in 

the literature. Evidence from stomach contents suggested that redfins may overlap with siscowets 

in terms of prey items, as both morphs had coregonids and Burbot in their stomachs. However, a 

majority of the fish that were detected in stomachs were unidentifiable; the number of fish found 

in stomachs was 128 whereas the total number of identifiable fish was only 40. Because of these 

low sample numbers, it is difficult to draw definitive conclusions. 

While Mysis were differentiated in stomach content analyses, ‘other’ invertebrate taxa 

were not taxonomically resolved. In general, invertebrate biomass in stomachs of all morphs was 



38 

higher at Stannard Rock compared to Superior Shoal. This may reflect differences in prey 

availability, but further research is necessary to investigate this. 

According to the IRI scores, Mysis was the most common prey item for all morphs. This 

was due to the high occurrence of Mysis, (found in nearly all stomachs), and high number of 

individual mysids consumed. Previous studies have shown that Lake Trout will consume forage 

fish when available (Martin, 1970), but switch to a planktivorous diet if fish are unavailable 

(Martin, 1966). Fish had the second highest IRI score, reflecting the lower number of fish that 

were consumed relative to Mysis, but their relatively high contribution to biomass. Fish had the 

lowest IRI in humpers (IRI of 23.94 at Superior Shoal and 24.21 at Stannard Rock), reflecting 

lower consumption of fish biomass in this morph. Diporeia and eggs were rarely consumed by 

any morphs, and this was reflected in the low IRI scores for both prey items. Low IRI scores for 

Diporeia were expected, as Stannard Rock and Superior Shoal are located in areas of relatively 

low Diporeia density (Auer et al., 2013). Nearshore Lake Trout consume more Diporeia than 

offshore Lake Trout (Gamble et al., 2011a; Gamble et al., 2011b). Stannard Rock is ~45 km 

offshore and Superior Shoal is ~65km offshore, which means Diporeia may be less available at 

these study compared to previously investigated, more nearshore sites. Lastly, Diporeia are more 

commonly consumed by Lake Trout < 200 mm long (see Isaac et al., 2012), and none of the 

Lake Trout examined in this study were < 300 mm in length. Fish eggs were also expected to be 

uncommon in Lake Trout stomachs, as most morphs spawn in the fall, while sampling for this 

study occurred during summer (Eschmeyer, 1955; Hansen et al., 2016). 

While morphs overlapped in terms of consumption of certain prey items (i.e., Mysis, 

unidentified invertebrates), the IRI scores and stomach contents support my hypothesis that 

trophic ecology (as inferred by stomach contents) differs among morphs. Humpers relied more 
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heavily on Mysis, leans fed more on coregonids, and siscowets and redfins fed on larger prey 

such as burbot. Feeding ecology may also differ between sites, as evidenced by inter-site 

differences in stomach contents for siscowets. These differences may reflect variability in prey 

availability between sites. 

 

Fatty Acids 

At Superior Shoal, results from an LDA performed on 30 fatty acids known to be dietary 

tracers revealed separation of the morphs into three groups: the first group contained leans, the 

second contained humpers and siscowets, and the third contained redfins. These results suggest 

that humpers and siscowets have the greatest diet overlap, and support my prediction of humpers 

having diets that are most similar to siscowets. 

Similarities in fatty acid profiles between humpers and siscowets likely reflects overlap in 

habitat between the two morphs (e.g., Rahrer, 1965; Harvey & Kitchell, 2000), and similarities in 

prey consumption (Gamble et al., 2011a; this thesis). Interestingly, redfins and leans had the least 

diet overlap as inferred from fatty acid data, even though redfins and leans have similar depth 

ranges (Harvey & Kitchell, 2000; Hansen et al., 2016). The minimal fatty acid overlap between 

redfins and leans was supported by 18:3n3, a fatty acid that can indicate either a terrestrial 

(Budge & Parrish, 1998; Budge et al., 2001) or algal source (Arts & Wainman, 1999) heavily 

associating with leans. Redfins also had significantly different fatty acid profiles from humpers 

and siscowets; trophic ecology of redfin as inferred from fatty acid data thus differed from each 

of the other morphs. The fatty acids 18:4n3, 20:5n3 15:0, and 15:1n6: zooplankton (Harrington 

et al., 1970; Budge & Parrish, 1998) diatom (Meziane et al., 2002) and bacterial biomarkers 

(Volkman et al., 1980; Vestal & White, 1989; Kharlamenko et al., 1995) respectively, were most 

closely associated with redfins. While this result may suggest a larger contribution of diatom or 
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zooplankton fatty acids to redfin diets, one issue with bacterial fatty acids is that they can reflect 

the gut flora of an organism (Iverson et al., 2004). Furthermore, redfins were only collected at 

Superior Shoal, so without other sites to compare to, it is impossible to determine if these fatty 

acids are associated with redfins throughout Lake Superior, or if these fatty acids are reflective of 

habitat use and prey consumption specific to Superior Shoal. Further investigation is required to 

elucidate dietary-based differences in redfin fatty acids. 

Dietary fatty acids at Stannard Rock separated the morphs into three distinct groups. 

However, unlike Superior Shoal where siscowets and humpers were more similar to each other, 

siscowets were more similar to leans than humpers at Stannard Rock. This is consistent with the 

similarities in stomach contents observed between siscowets and leans at Stannard Rock; 

coregonids, Deepwater Sculpin, and invertebrates were consumed in similar proportions by both 

leans and siscowets (this thesis). The similarities in fatty acid profiles between siscowets and 

leans suggest similar diets between siscowets and leans at Stannard Rock. Terrestrial biomarkers 

were found to associate with both sides of the significant LD1 axis at Stannard Rock. The 

terrestrial biomarker 18:2n6 was most closely associated with leans at Stannard Rock, and this 

fatty acid was found in relatively high concentrations in the abundant terrestrial moths that were 

collected from the surface. On the opposite side of the axis, 18:3n3, which can indicate either 

terrestrial (Budge & Parrish, 1998; Budge et al., 2001) or algal (Arts & Wainman, 1999) diet 

sources, was most closely associated with humpers, and was also highly concentrated in 

terrestrial moths. Terrestrial inputs may play a greater role at Stannard Rock than Superior Shoal 

because Stannard Rock is shallower (150m compared to 250m) and nearer to shore (45km vs 

65km) than Superior Shoal.  



41 

While there were differences between sites in how fatty acids loaded onto LDA axes, 

many similarities were observed. A majority of the highest loading fatty acids were biomarkers 

for zooplankton (Harrington et al., 1970; Budge & Parrish, 1998), diatoms (Dunstan et al., 1994; 

Kharlamenko et al., 1995), algae (Kirsch et al., 1998), or bacteria (Meziane et al., 2002), and the 

same category of biomarker (e.g., diatom markers) would often load onto both sides of an LDA 

axis simultaneously. This makes it difficult to infer contributions of specific prey types from the 

fatty acid profiles of the Lake Trout morphs; morphs were often associated with biomarkers 

indicating similar sources. This is not unexpected, as fatty acids can provide evidence for the 

organism that produced them, but they cannot determine if a predator assimilated a fatty acid 

through direct consumption of the original organism, or if the predator consumed other prey that 

had consumed the original organism (Budge et al., 2006). The offshore Lake Superior food web 

has many connections, with species such as Mysis acting as integrators of many basal food 

sources, and as an important food source for many fishes (Ahrenstorff et al., 2011; Gamble et al., 

2011a; Gamble et al., 2011b; Sierszen et al., 2011). Mysis consume a variety of zooplankton 

(Grossnickle, 1982; Johannsson et al., 2001), which are known to produce their own unique fatty 

acid biomarkers, in addition to containing biomarkers of their prey such as algae and diatoms 

(Brett et al., 2009). Mysis is therefore able to provide fatty acids produced by primary producers 

and zooplankton to virtually all other levels of the food web. It is thus not surprising the same 

category of biomarker would load onto both sides of an LDA axis; many of the highest loading 

fatty acids that are known biomarkers of particular taxa (e.g., 18:4n3 for zooplankton, 16:2n4 

and 20:5n3 for diatoms) (Harrington et al., 1970; Dunstan et al., 1994; Kharlamenko et al., 1995; 

Budge & Parrish, 1998) were present in Mysis, and Mysis was found in the stomachs of all Lake 

Trout morphs at both sites.  
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Even though many of the fatty acids present in Lake Trout morphs can be explained by 

the consumption of Mysis, differences in fatty acids among morphs (e.g., terrestrial inputs) 

showed that humper fatty acid profiles were similar to siscowets at Superior Shoal, and differed 

from leans and redfins. In contrast, leans and siscowets had similar fatty acid profiles at Stannard 

Rock, whereas humpers were most different in fatty acid profile. These observed differences in 

dietary-based overlap morphs between sites could reflect site-specific differences in prey 

availability, but further research is necessary. 

Non-dietary fatty acids contributed to separation among morphs at both sites, but was 

most obvious at Superior Shoal, where the morphs were clustered quite closely using dietary 

fatty acids, but separated into more discrete groups when non-dietary fatty acids were included in 

the analysis. Differences in fatty acids among morphs may be driven by factors other than diet, 

such as metabolism (Cook, 1991; Tocher, 2003; Budge et al., 2006; Iverson, 2009), and a 

number of previous studies have demonstrated metabolic differences among morphs (Eschmeyer 

& Phillips, 1965; Goetz et al., 2010; Goetz et al., 2014). Recent evidence suggests that different 

morphs at the same site are more closely related to each other than the same morph at different 

sites (Baille et al., 2016). For example, different fatty acids loaded at each site (e.g.,12:0, 13:1, 

20:0, 21:3n5 were unique to Stannard Rock), which could indicate that differences in genetic 

control of enzymes involved with lipid synthesis and circulation (i.e., acyl-CoA desaturase, 

lipoproteins) differs between sites. Overall, fatty acid results suggest subtle differences in diet 

among morphs, differences in metabolism among morphs, and differences in both diet and 

physiology within morphs but between sites. 
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Stable Isotopes 

Earlier studies comparing δ13C ratios between siscowets and leans demonstrated that 

juveniles of both morphs have similar δ13C ratios, but that the ratios diverge as morphs mature; 

large siscowets have more depleted δ13C ratios (Harvey et al., 2003) than leans (Omara et al., 

2015). In this study, however, all Lake Trout morphs had similar lipid-corrected δ13C ratios. It is 

possible that inter-morph patterns are dissimilar among studies because of different approaches 

to lipid correction models. Harvey et al. (2003) developed their own lipid correction model, 

whereas Omara et al. (2015) utilized the Post et al. (2007) method of lipid correction. Hoffmann 

et al. (2015) used the same mass-balance lipid corrections performed in this study, showed that 

leans and siscowets from Lake Superior had very similar δ13C ratios (absolute difference of 

~0.4‰). All of the morphs analyzed in this study had average δ13C ratios within 0.5‰ of each 

other. The trophic fractionation of carbon is variable and can range between 0.4 and 1‰ (Vander 

Zanden & Rasmussen, 2001; Post, 2002; Sierszen et al., 2014). If data were interpreted using 

Post’s (Post, 2002) values of 0.4‰, then some morphs may be feeding on different carbon 

sources. However, the lack of statistically significant differences among the morphs, coupled 

with previous studies in Lake Superior using 1‰ as the trophic fractionation of δ13C (Sierszen et 

al., 2014) suggest that it is most likely that the differences in δ13C observed among the Lake 

Trout morphs are not ecologically significant. Because both Superior Shoal and Stannard Rock 

are offshore sites, this result is perhaps not surprising. Another possible explanation for minimal 

differences in δ13C among these morphs arises from the fact that large, mobile generalist 

predators, such as Lake Trout, often consume prey from a variety of environments (McMeans et 

al., 2013), which may result in similar δ13C ratios, but not as a result of feeding at the same basal 

carbon source. Results similar to these have been recently observed in Great Bear Lake 
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(Chavarie et al., 2016a), where Lake Trout morphs were more differentiated by δ15N ratios, with 

little differences in δ13C ratios among morphs.  

Delta15N ratios differed among morphs, but the absolute differences ( ~0.6‰) were small. 

At Stannard Rock, siscowets had the highest δ15N, followed by humpers and leans. These results 

are consistent with previously observed trends where siscowets tend to be enriched in δ15N 

compared to leans (Harvey & Kitchell, 2000; Harvey et al., 2003; Omara et al., 2015). In 

contrast, humpers and redfins had the highest δ15N at Superior Shoal, followed by leans and 

siscowets. This was contrary to my hypothesis. Slightly elevated δ15N in humpers at Superior 

Shoal could reflect feeding on Deepwater Sculpin, which was the only identifiable fish found in 

humper stomachs at both sites. Deepwater Sculpin are relatively enriched in δ15N (Schmidt et al., 

2009; Zimmerman et al., 2009; Omara et al., 2015), had higher δ15N at Superior Shoal compared 

to Stannard Rock, and overlap in depth range with humpers (Rahrer, 1965; Selgeby, 1988). The 

relatively slow growth of humpers could also have caused higher δ15N than expected (Rahrer, 

1965; Hansen et al., 2016). An inverse relationship between δ15N enrichment and growth rate has 

been observed in several fishes (Trueman et al., 2005).  

Redfins are the largest and oldest of the four morphs (Hansen et al., 2016). Enrichment of 

δ15N has been observed to occur with size (e.g., Hobson & Welch, 1995; Kwak & Zedler, 1997; 

Lindsay et al., 1998) and age (Overman & Parrish, 2001) ), which could explain the slightly 

elevated δ15N ratios relative to leans and siscowets at Superior Shoal. However, although inter-

morph differences in δ15N ratios were significant, average δ15N ratios were within 1.0‰ among 

all morphs at both sites. The trophic fractionation of nitrogen is approximately 3.4‰ (Vander 

Zanden & Rasmussen, 2001; Post, 2002), and it is therefore likely that all the Lake Trout morphs 

are feeding at a similar trophic level.  
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Delta δ34S ratios differed significantly among morphs at both sites. At Superior Shoal, 

leans were the most enriched, followed by redfins, humpers and siscowets. The trophic 

fractionation of Sulphur is < 0.5‰ (see Schmidt et al., 2015). Observed differences in δ34S 

among morphs (range of δ34S ~0.75‰) at Superior Shoal suggest that leans may be relying more 

on pelagic inputs compared to humpers and siscowets, which may be feeding on basal resources 

from the profundal zone. Similarities in δ34S ratios between humpers and siscowets support my 

prediction of humpers and siscowets sharing similar prey resources. These results are supported 

by fatty acid data from this study, which showed that leans had distinct fatty acid profiles from 

humpers and siscowets. Humpers, siscowets, and redfins were also associated with more 

bacterial biomarkers than leans, which would be expected in morphs consuming more profundal 

resources (Croisetiere et al., 2009; Karube et al., 2012).  

In contrast to the results at Superior Shoal, humpers at Stannard Rock were most enriched 

in δ34S ratios, followed by siscowets and leans. Like Superior Shoal, these results are also 

supported by fatty acid data from this study, which showed that leans and siscowets had more 

similar fatty acid profiles at this site. Unlike what was observed at Superior Shoal, the 

differences in δ34S ratios between humpers and siscowets at Stannard Rock is contrary to my 

prediction of humpers and siscowets sharing similar prey resources. However, the difference in 

δ34S between humpers and leans is ~0.4‰, which indicates that there is no difference in sulphur 

source between the morphs. Humpers and leans were also associated with the same number of 

bacterial fatty acids, suggesting similar reliance on profundal resources. Differences in δ34S 

ratios between sites could reflect the fact that Stannard Rock is much shallower and closer to 

shore than Superior Shoal. This means that there may not be as much spatial separation between 

pelagic and profundal sources of production, and all three morphs may consume inputs from 
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both sources. The differences in δ34S ratios among Lake Trout morphs at Superior Shoal does 

provide some support that there is a weak pelagic-profundal gradient of resource use among 

morphs. However, because analysis of δ34S ratios of the water column and sediments have not 

yet been completed, it is difficult to infer what may be driving the different δ34S ratios in Lake 

Trout morphs between sites.  

 

Qualitative Food Web Analysis 

The food webs of Superior Shoal and Stannard Rock were quite similar; ranges of δ13C, 

δ15N and δ34S and relative positioning of organisms were consistent among sites, with the 

exception of the 63-250-µm size fraction of zooplankton. Zooplankton of this size were enriched 

by ~4‰ at Superior Shoal compared to Stannard Rock, which reflects about ~1 trophic level. At 

Stannard Rock, the 63-250-µm size fraction contained mostly Diaptomus sp., and the  

250-500-µm fraction contained predominately Limnocalanus marcrurus. Temporal and spatial 

variability in zooplankton δ13C and δ15N ratios are well documented (e.g., Cabana and 

Rasmussen, 1996; Matthews and Mazumder, 2005; Syvaranta et al., 2006). Since the 

zooplankton sampling took place in two different years, this may have influenced the δ13C and 

δ15N ratios reported in this study. However, other possible factors may have influenced the 

observed δ13C and δ15N ratios. The Limnocalanus dominated fraction was more enriched in δ15N 

compared to the Diaptomus dominated fraction, which is consistent with previous studies 

(Jackson et al., 2013). The size fractions from Superior Shoal were unfortunately not identified 

prior to isotope analysis, but both fractions had similar δ15N, suggesting that the 63-250-µm size 

fraction at Superior Shoal may have been predominately Limnocalanus. It is also possible that 

the small size fraction was enriched due to the depth it was collected, as enrichment in 
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zooplankton δ15N ratios with depth has been demonstrated elsewhere (Johannsson et al., 2001; 

Koppelmann et al., 2009). Further research is necessary to examine between site differences in 

zooplankton community composition and isotope ratios.  

Similarities in isotope ratios among prey species, as well as their relative position in the 

food webs, suggest that most species analyzed could be consumed by Lake Trout morphs. 

Consistent with the stomach content results from this study, the isotope ratios of Diporeia, snails, 

clams, moths, and zooplankton suggest that these species are unlikely to be consumed in large 

proportions by Lake Trout morphs. Mysis, Deepwater Sculpin, and coregonids (i.e., Kiyi, 

Bloater, Cisco) were the most common prey items found in Lake Trout stomachs, but because all 

three coregonid species have similar isotope ratios (likely because of similarities in diet (Mysis, 

calanoid copepods, and Daphnia) (Gamble et al., 2011a; Isaac et al., 2012), evaluating specific 

prey/proportions of prey that the Lake Trout morphs are consuming cannot be achieved using 

stable isotopes alone.  

 

Conclusion 

Subtle differences in stomach content, fatty acid profiles, and stable isotope ratios among 

the Lake Superior Lake Trout morphs were observed, and support my hypothesis that feeding 

ecology differs among morphs. While temporally limited, stomach contents indicated that 

humpers receive 40%-50% of their total biomass from Mysis, reflecting a planktivorous diet for 

humpers, which contrasted the piscivorous diet of the other three morphs. Fatty acid profiles of 

dietary fatty acids showed overlap between humpers and siscowets, suggesting diet similarities 

between these two morphs. However, siscowets fatty acid profiles were more similar to leans at 

Stannard Rock, suggesting that variability between sites may also influence morph diets. Stable 
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isotope ratios of C, N, and S were very similar among Lake Trout morphs. This was contrary to 

my prediction that humpers would occupy a lower trophic level than the other morphs; all four 

Lake Trout morphs in Lake Superior appear to occupy a similar trophic level. The only stable 

isotope that suggested differences was δ34S, but further examination is required to explain the 

observed differences in δ34S ratios between sites, and if these differences reflect dietary 

differences among morphs. Overall, it appears that humper feeding ecology differs from the 

other three morphs of Lake Trout in Lake Superior in terms of reliance on Mysis, though based 

on fatty acid profiles they appear to share similarities in prey items with siscowets (at least at 

Superior Shoal). This provides support for my prediction that humpers would have different diets 

from the other Lake Trout morphs, but have some prey items in common with the siscowets. 

The findings of this study highlight the need for multiple sampling campaigns throughout 

the year; stomach contents only show a brief snapshot of diet, so long-term trends are not 

detectable without multiple sampling efforts. Stable isotope analyses performed on muscle tissue 

are reflective of ~1 year or more of dietary inputs, depending on growth rates (Hesslein et al., 

1993), and do not indicate small scale seasonal differences. Stable isotope analysis conducted on 

tissues with different turnover rates (e.g., liver, blood) may also be useful in more accurately 

determining subtle temporal differences in diets among morphs. Fatty acids integrate roughly 2 

months of diet information (Happel et al., 2016), so multiple sampling campaigns would also 

likely be necessary to capture small seasonal dietary changes.  

Future directions of study include examining if there are ontogenetic differences in 

feeding in redfins and humpers, as this has been demonstrated for leans and siscowets 

(Zimmerman et al., 2009). DNA analysis and enzyme studies of humpers and redfins could also 

be performed, which may help explain metabolic differences among morphs. Another avenue of 
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future research is applying quantitative fatty acid signature analysis (QFASA) to Lake Trout 

morphs. This technique quantifies the contribution of fatty acids from prey items (Iverson et al., 

2004), and may be useful in determining if some of the fatty acids that were not used as dietary 

biomarkers actually play a role in indicating differences in diet. However, QFASA requires 

calibrations of fatty acid concentrations through controlled feeding studies (Iverson et al., 2004), 

and thus further laboratory work would be necessary before this can be accomplished.  
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2.5 Figures and Tables 

 
Figure 2.1. Location of sampling sites in Lake Superior.   
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Figure 2.2. Stomach content biomass and counts for morphs of Lake Trout captured at Stannard Rock (a,c) and 

Superior Shoal (b,d). With the exception of humpers at Stannard Rock (a), fish accounted for >50% of biomass in 

Lake Trout stomachs at both sites and in all morphs. Numerically, Mysis was the most abundant prey consumed 

(c,d). Mysis contributed more biomass to stomach contents of humpers compared to the other morphs (a,b).  

 

 

 
Figure 2.3. Composition of fish in Lake Trout stomachs captured at Stannard Rock (a,c) and Superior Shoal (b,d). 

Many of the fish remains in stomachs could not be identified (c,d). Coregonids contributed high proportions of 

biomass to the stomachs of leans and siscowets captured at Stannard Rock whereas Deepwater Sculpin contributed 

the greatest proportion of biomass to the stomachs of humpers collected at Stannard Rock (a). At Superior Shoal, 

coregonids contributed the greatest biomass to lean stomachs, whereas Deepwater Sculpin contributed the greatest 

biomass to humper stomachs (b); biomass in siscowet and redfin stomachs represented contributions from both 

coregonids and Burbot (b). 
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Figure 2.4. Linear discriminant function plot of fatty acid data from the four Lake Trout morphs from Superior 

Shoal. Refer to text for statistics associated with each LDA. In the LDA with all 70 fatty acids (a), the first two 

discriminant functions explained 83.7% of the variation. In the LDA of 30 dietary fatty acids, only the first 

discriminant function was significant, explaining 61.8% of the variation. When dietary fatty acids were excluded (c), 

three discriminant functions were significant (only the first two are presented here). The 5 highest-loading fatty 

acids for each side of the significant axis from the LDA with dietary fatty acids (b) are presented in (d). Letters 

beside fatty acids represent prey organisms from this study that had the highest concentration of that fatty acid. 

Letter codes: D= Deepwater Sculpin, M= Mysis, Z= Zooplankton. Only organisms with >1% concentration of a fatty 

acid are shown in (d).  
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Figure 2.5. Linear discriminant function plots of the three Lake Trout morphs from Stannard Rock. Refer to text for 

statistics associated with each LDA. In both the LDA using all 70 fatty acids (a), and the LDA with 30 dietary fatty 

acids (b), only the first axes were significant. When dietary fatty acids were excluded, both discriminant axes were 

significant. The 5 highest-loading fatty acids for each side of the significant axis from the analysis of dietary fatty 

acids (b) are presented in (d). Letters beside fatty acids represent prey organisms from this study that had the 

highest concentration of that fatty acid. Letter codes: D= Deepwater Sculpin, M= Mysis, Mo= Moths, Z= 

Zooplankton. Only organisms with >1% concentration of a fatty acid are shown in (d).  
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Figure 2.6. Superior Shoal food web bi-plots depict A) δ13C and δ15N ratios, and B) δ13C and δ34S ratios. Values are 

plotted as average isotope ratio measured in ‰ ± 1 standard error. Species codes are as follows: Hump=Humper, 

Lean=Lean, Sis=Siscowet, Red=Redfin, DPSC=Deepwater Sculpin, Kiyi=Kiyi, Mys=Mysis, Dip=Diporeia, Zoo1= 

Zooplankton 63-250 µm, Zoo2=Zooplankton 250-500 µm. Ranges for isotope ratios were δ13C=3.85, δ15N=4.30, 

and δ34S=2.61. 
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b) 
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Figure 2.7. Stannard Rock food web bi-plots depict A) δ13C and δ15N ratios, and B) δ13C and δ34S ratios. Values are 

plotted as average isotope ratio measured in ‰ ± 1 standard error. Species codes are as follows: Hump=Humper, 

Lean=Lean, Sis=Siscowet, DPSC=Deepwater Sculpin, Kiyi=Kiyi, Bloater=Bloater, Cisc=Cisco, RNSM=Rainbow 

Smelt, PGWH=Pygmy Whitefish Mys=Mysis, Dip=Diporeia, Zoo1= Zooplankton 63-250 µm, Zoo2=Zooplankton 

250-500 µm, Clam=Clam, Snail=Snails, Moth=Moths. Ranges for isotope ratios were δ13C=3.63, δ15N=8.54, and 

δ34S=2.08. To facilitate comparisons, organisms collected at Stannard Rock that were not collected at Superior Shoal 

were excluded from isotope range calculations. 

 

  

a) 

 

b) 
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Table 2.1. Taxa- and site-specific sample sizes analyzed for stable isotopes and fatty acids, and total number of 

Lake Trout stomachs used for stomach content analysis. A number in brackets indicates that replicates were 

composed of composite samples of several individuals.  

Sample 13C (bulk) 13C (extracted) 15N  34S  Fatty Acids Stomach 
Contents  

Superior Shoal       

Lean 30 15 30 30 30 38 
Siscowet 30 15 30 30 30 131 
Humper 30 15 30 30 30 31 
Redfin 30 30 30 30 30 60 
Kiyi 15 8 15 15 15  
Deepwater Sculpin 15 8 15 15 15  
Mysis (5) (1) (5) (3) (2)  
Diporeia (5) 0 (5) (3) 0  
Zooplankton (10) (2) (10) (6) (2)  

       
Stannard Rock       

Lean 30 15 30 30 30 41 
Siscowet 30 15 30 30 30 85 
Humper 30 15 30 30 30 33 
Kiyi 15 8 15 15 15  
Deepwater Sculpin 15 8 15 15 15  
Bloater 15 6 15 15 15  
Cisco 15 8 15 15 15  
Rainbow Smelt 15 0 15 15 (3)  
Pygmy Whitefish 15 8 15 15 15  
Mysis (5) (1) (5) (3) (3)  
Diporeia (5) 0 (5) (3) 0  
Zooplankton (10) (2) (10) (6) (3)  
Clam (5) 0 (5) 0 0  
Snail (5) 0 (5) (3) 0  
Moth (5) (1) (5) (3) (3)  

 
 

  



57 

Table 2.2. Fatty acids analyzed as indicators of trophic resources use. Fatty acids were separated into known dietary 

biomarkers (n=30), and those that are either not currently known to be used as dietary markers, or that are known to 

reflect metabolism (n=40). References for studies using fatty acids are included where available.  

 
Dietary Fatty Acids 

Fatty Acid Indicates Reference 

15:0 Bacteria (Meziane et al., 2002) 

15:0 iso Bacterial (Meziane et al., 2002) 

15:1n:8  Bacteria (Volkman et al., 1980; Vestal & White, 1989) 

15:1n6 Bacteria (Volkman et al., 1980; Vestal & White, 1989) 

16:1n7 Bacteria/Diatom (Kharlamenko et al., 1995; Dalsgaard et al., 2003) 

16:2n4 Diatom (Dunstan et al., 1994) 

16:2n6 Algal (Dunstan et al., 1992) 

17:0 Bacteria (Meziane et al., 2002) 

17:1 Bacteria (Meziane et al., 2002) 

17:0 iso Bacteria (Meziane et al., 2002) 

16:4n1 Diatom (Dunstan et al., 1994) 

16:4n3 Algal (Kelly & Scheibling, 2012) 

18:1n9 Zooplankton (Kattner & Hagen, 2009) 

18:1n7 Bacteria/Diatom (Kharlamenko et al., 1995; Dalsgaard et al., 2003) 

18:2n6 Terrestrial (Budge & Parrish, 1998; Budge et al., 2001) 

18:3n3 Terrestrial/Algal (Budge & Parrish, 1998; Arts & Wainman, 1999; Budge et al., 2001) 

18:4n3 Zooplankton (Harrington et al., 1970; Budge & Parrish, 1998) 

20:1n11 Zooplankton (Dalsgaard et al., 2003; Iverson, 2009) 

20:1n9 Zooplankton (Dalsgaard et al., 2003) 

20:4n6 Algal (Kirsch et al., 1998) 

20:5n3 Diatom (Kharlamenko et al., 1995) 

20:2 NMI D1 Bivalves (Joseph, 1982) 

C20:2 NMI D2 Bivalves (Joseph, 1982) 

20:3 NMI T Bivalves (Joseph, 1982) 

22:1n11 Zooplankton (Hagen et al., 1993) 

22:1n9 Zooplankton (Hagen et al., 1993) 

22:5n6 Zooplankton (Ahlgren et al., 2009) 

22:6n3 Diatom (Cook, 1991) 

22:2 NMI D1 Bivalves (Joseph, 1982) 

22:2 NMI D2 Bivalves (Joseph, 1982) 

Non Dietary Indicators 

Fatty Acid Production Reference 

12:0 Metabolism (Iverson et al., 2004) 

12:1    
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13:1    

14:0 Metabolism (Iverson, 2009) 

14:0 iso   

14:1n9   

14:1n7   

14:1n5 Metabolism (Iverson et al., 2004) 

14:0 ante   

16:0 Metabolism (Iverson, 2009) 

16:0 iso   

16:1n11 Metabolism (Iverson et al., 2004) 

16:1n9 Metabolism (Iverson et al., 2004) 

16:1n5    

18:0 Metabolism (Iverson, 2009) 

7Me 16:0   

16:3n4   

18:1n5   

18:2d5, 11   

18:2n7   

18:2n4   

18:3n6 Metabolism (Tocher et al., 2006) 

18:3n4   

18:3n1   

18:4n1   

20:0   

20:1n7   

20:2n9 Metabolism (Cook, 1991) 

20:2n6   

20:3n6 Metabolism (Cook, 1991) 

20:3n3   

20:4n3 Metabolism (Cook, 1991) 

22:0   

22:1n7   

22:2n6   

21:5n3   

22:3n3   

22:4n3   

22:5n3 Metabolism (Cook, 1991) 

24:1n9   
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Table 2.3 Site- and morph-specific relative importance indices for each prey category. Values range from 0 to 100; 

higher numbers represent prey items that are relatively more common in stomachs. Mysis was the most important 

prey item for all morphs at both sites, and fish were the second most important prey item for all morphs at both sites. 

For each morph, invertebrates were relatively more important at Stannard Rock than at Superior Shoal.   

Morph Site Fish Mysis Diporeia Invertebrates Eggs 

Lean 
Superior Shoal 28.49 54.81 0 15.30 1.40 

Stannard Rock 28.59 51.17 0.88 19.36 0 

Siscowet 
Superior Shoal 34.30 53.34 0.34 11.34 0.69 

Stannard Rock 26.13 47.68 0.54 23.88 1.78 

Humper 
Superior Shoal 24.21 62.55 0 7.02 6.22 

Stannard Rock 23.94 50.39 2.63 21.09 1.95 

Redfin Superior Shoal 33.05 54.57 0 12.39 0 
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Table 2.4. Fatty acid loading scores for LDAs conducted at Stannard Rock and Superior Shoal. Only axes that were 

significant (as determined by Wilk’s lambda, up to the first 2 axes) are reported. When two axes were significant, a 

fatty acid was listed only under the axis for which it scored highest. ‘Score’ refers to the unstandardized canonical 

discriminant function coefficient. Negative scores indicate loadings on the negative side of the axis, and positive 

scores indicate loadings on the positive side of the axis. Magnitude of the score reflects the overall effect the fatty 

acid had on the discriminant function. Indicator is the organism or physiological process a fatty acid is associated 

with. For dietary LDAs, biomarker names in italics indicate organisms from this study that had the highest 

concentration of a given fatty acid. Asterisks (*) beside an italicized name indicate a fatty acid concentration less 

than 1.0% of total fatty acids. Only the 5 highest (or fewer) scoring fatty acids for each side of an axis are presented. 

LDA LD1 LD 2 

Superior Shoal Fatty Acid Score Indicator Fatty Acid Score Indicator 

All fatty acids(n=70) 

17:0 30.19 Bacteria 18:1n7 34.86 Bacteria 

18:2n6 22.58 Terrestrial 16:0 23.71 Algal 

16:2n4 19.35 Diatom 20:0 10.55  

18:4n3 17.05 Zooplankton 16:1n11 8.35 Metabolism 

16:1n5 16.58  17:0 iso 5.70 Bacterial 

18:3n6 -13.67 Metabolism 20:1n7 -5.11 Zooplankton 

17:1 -13.77 Bacteria 16:1n7 -7.14 Bacteria 

14:0 anteiso -13.97  18:2n4 -11.68  

18:3n3 -19.73 Terrestrial 16:2n6 -11.74 Algal 

15:0 -43.25 Bacteria 22.5n3 -12.01 Metabolism 

Non dietary/ 

unknown if dietary 

fatty Acids (n=40) 

20:3n3 9.49  7Me 16:0 6.49  

16:1n5 7.87  16:1n11 4.88 Metabolism 

18:3n4 7.15  14:0 iso -2.47  

16:1n9 6.49 Metabolism 16:0 iso -3.67  

18:0 6.48 Metabolism    

18:1n5 -4.43     

18:2Δ5,11 -4.61     

20:1n7 -4.78     

22:5n3 -7.97 Metabolism    

14:1n7 -8.76     

Known dietary fatty 

acids (n=30) 

15:0 
13.86 

Bacteria 

Zooplankton 

 
 

 

18:1n7 

7.92 

Bacteria/ 

Diatom, 

Deepwater 

Sculpin 

 

 

 

18:4n3 
7.57 

Zooplankton, 

Zooplankton 

 
 

 

20:5n3 
6.23 

Diatom, 

Mysis 

 
 

 

15:1n6 
4.24 

Bacteria, 

Kiyi* 

 
 

 

20:4n6 -2.61 Algal, Mysis    

17:0 iso 
-4.49 

Bacteria, 

Kiyi* 

 
 

 

16:2n4 

-5.06 

Diatom, 

Deepwater 

Sculpin* 

 

 

 

18:3n3 

-7.48 

Terrestrial or 

Algal, 

Zooplankton 

 

 

 

16:2n6 

-10.99 

Algal, 

Deepwater 

Sculpin* 
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Stannard Rock 

 

LD1 

 

LD 2 

Fatty Acid Score Biomarker Fatty Acid Score Biomarker 

All fatty acids(n=70) 

15:0 65.72 Bacteria    

21:5n3 60.90     

18:0 57.75 Metabolism    

16:1n9 43.3225 Metabolism    

18:2n4 40.9829     

20:0 -41.41     

18:3n3 -51.34 Terrestrial    

16:0 -55.19 Metabolism    

17:0 -58.05 Bacteria    

14:0 -71.85 Metabolism    

Non dietary/ 

unknown if dietary 

fatty Acids (n=40) 

21:5n3 22.33  14:0 20.18 Metabolism 

18:0 17.37 Metabolism 18:3n4 14.87  

13:1 13.41  16:1n5 13.42  

22:5n3 12.52 Metabolism 22:4n3 8.87  

12:0 11.45 Metabolism 18:1n5 -8.27  

20:0 
-8.63 

 

140: 

anteiso 
-8.45 

 

22:3n3 -24.60  24:1n9 -9.54  

16:0 -36.05 Metabolism 20:4n3 -19.93 Metabolism 

Known dietary fatty 

acids (n=30) 

15:0 
10.27 

Bacterial, 

Zooplankton 

 
 

 

18:2n6 
10.26 

Terrestrial, 

Moths 

 
 

 

20:5n3 
9.83 

Diatom, 

Mysis 

 
 

 

18:4n3 
9.22 

Zooplankton, 

Zooplankton 

 
 

 

20:1n9 
9.02 

Zooplankton, 

Cisco* 

 
 

 

20:1n11 
-4.43 

Zooplankton, 

Moths*  

  

17:0 
-4.46 

Bacteria, 

Zooplankton  

  

16:2n4 
-5.87 

Diatom, 

Mysis*  

  

16:1n7 

-6.94 

Diatom/Bacte

ria, 

Deepwater 

Sculpin  

  

18:3n3 
-17.66 

Terrestrial or 

Algal, Moths  
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Table 2.5. Mean + SD isotope ratios for each site and morph of Lake Trout. δ13CAdjusted represent carbon isotope 

ratios after lipid correction was applied. δ15N and δ34S ratios differed among morphs within sites (ANOVA, F≥2,87 

≥4.957, p≤0.009). Letters indicate significant pairwise differences (Tukey’s HSD <0.05) among morphs within the 

same site. In a two-way ANOVA, significant differences among morphs and between sites in average δ13CAdjusted , 

δ15N, and δ34S ratios were observed (ANOVA, F≥2,174 ≥3.263, p≤0.041). Despite these statistical differences, absolute 

differences in isotope ratios were very minor, and given the uncertainty around fractionation factors, are likely not 

ecologically relevant. 

 

Sample δ13CAdjusted (mean±SD) δ15N (mean±SD) δ34S (mean±SD) 

Superior Shoal    

Lean -23.94±0.44 10.32±0.75 a,b 4.71±0.40 a 
Siscowet -23.84±0.58 10.19±0.52 b 3.96±0.54 b 
Humper -23.89±0.61 10.81±1.06 a 4.09±0.47 b 
Redfin -23.68±0.52 10.84±0.75 a 4.44±0.26 a 
    
Stannard Rock    

Lean -23.93±0.64 10.02±0.64 b 3.81±0.30 b 
Siscowet -23.45±0.79 10.63±0.92 a 3.85±0.30 b 
Humper -23.94±0.99 10.41±0.67 a 4.25±0.51 a 

Site δ13CAdjusted Range δ15N Range δ34S Range 

Superior Shoal 0.26 0.65 0.75 
Stannard Rock 0.49 0.61 0.44 
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Chapter 3 

 

Niche overlap among Lake Trout morphs in Lake Superior 

3.1 Introduction 

Ecological niches can be defined as the environmental and trophic resources utilized by 

organisms (see Newsome et al., 2007). Hutchinson (1957) proposed that a niche is an n-

dimensional space, where each environmental and biological component that comprises the niche 

is represented by a dimension (Hutchinson, 1957). Niche overlap is commonly observed in 

nature as many species share resources, such as prey or habitat (Rusterholz, 1981; Arlettaz et al., 

1997; Hodgson et al., 1997; Hasui et al., 2009). It has been proposed that species can tolerate 

overlap in niche space, differences in at least one dimension prevent competitive exclusion 

(Hutchinson, 1957; May & Macarthur, 1972; Pianka, 1974).  

One way to quantify the trophic dimensions of an organism’s niche is through the use of 

stable isotope ratios. Stable isotope ratios are routinely used as tracers of diet and habitat use. In 

freshwater systems, nitrogen isotope ratios (δ15N) are used to infer relative trophic position 

(Deniro & Epstein, 1981), carbon isotope ratios (δ13C) are used to discriminate between benthic 

and pelagic basal food sources (Deniro & Epstein, 1978; France, 1995), and sulphur isotopes 

(δ34S) are used to discriminate between pelagic and profundal food sources (see Peterson & Fry, 

1987; Croisetiere et al., 2009). Isotopic niches have been used as proxies for ecological niches in 

many previous studies (e.g., Bearhop et al., 2004; Newsome et al., 2007; Jackson et al., 2011). 

Fatty acids can also be used to quantify trophic niche, as some fatty acids, particularly long chain 

monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids can be indicative of diet (see 

Arts & Wainman, 1999; Bradshaw et al., 2003; Dalsgaard et al., 2003). Most vertebrates lack the 
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necessary enzymes to produce MUFAs and PUFAs de novo (see Arts & Wainman, 1999; 

Hastings et al., 2001) and must obtain them through consumption. Certain fatty acids are 

biomarkers for the organisms that produce them; for example, 20:5n3 is dominant in diatoms, 

and 18:4n3 is high dinoflagellates (Harrington et al., 1970; Budge & Parrish, 1998). 

While resource partitioning among species is ubiquitously observed in nature, resource 

partitioning within species is also common (Bolnick et al., 2002). There is a high degree of 

intraspecific phenotypic diversity among populations within the Salvelinus genus (see Martin & 

Olver, 1980; Jonsson & Jonsson, 2001; Reist et al., 2013). The Lake Trout, Salvelinus 

namaycush, exhibits phenotypic variation in many lake habitats in North America (see Krueger 

& Ihssen, 1995; Blackie et al., 2003; Zimmerman et al., 2006; Hansen et al., 2012; Chavarie et 

al., 2013; Muir et al., 2014). Different phenotypic variants, or morphs, of Lake Trout exist in 

sympatry, and display differences in characteristics such as body shape (Muir et al., 2014), fat 

content (Eschmeyer & Phillips, 1965; Goetz et al., 2014), gill raker structure (Martin & 

Sanderco, 1967), spawning time (Eschmeyer, 1955; Hansen et al., 2016), feeding (Harvey et al., 

2003; Ray et al., 2007; Gamble et al., 2011a) and habitat use (Behnke, 1972). Four Lake Trout 

morphs inhabit Lake Superior: leans, siscowets, humpers, and redfins (Muir et al., 2014). Each 

morph occupies a specific but overlapping depth range; leans occupy the shallowest depth range 

of the four morphs, and are commonly found in waters< 80m, (e.g., Harvey et al., 2003; Hansen 

et al., 2012). Siscowets are the most abundant morph in Lake Superior (Bronte et al., 2003), and 

are commonly found in waters > 80m deep (Sitar et al., 2008; Goetz et al., 2014). Siscowets 

display diel vertical migration (DVM) behaviour, which allows them to feed in the pelagic and 

profundal zone (Moore & Bronte, 2001; Gorman et al., 2012a, 2012b). Humpers are the smallest 

and slowest growing of the four morphs, and inhabit offshore reefs surrounded by mid to deep 
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water > 90m (Rahrer, 1965; Hansen et al., 2012). Redfins are highly buoyant morphs that are 

found between 50-100 m (potentially overlapping in depth with leans, siscowets, and humpers), 

but little else is currently known about this morph (Muir et al., 2014; Hansen et al., 2016).  

In addition to spatial overlap among morphs in lake habitat use, prey consumption also 

overlaps. Coregonid species (i.e., Kiyi, Cisco, Shortjaw, Bloater), Deepwater Sculpin, and Mysis 

are prey items commonly consumed by the Lake Trout morphs in Lake Superior (Gamble et al., 

2011a; Gamble et al., 2011b). Diet overlap and resource partitioning between lean and siscowet 

Lake Trout have been investigated in Lake Superior, in response to concerns that the more 

abundant siscowets may compete for resources with lean Lake Trout (Harvey et al., 2003). 

Evidence from both direct diet data and stable isotopes suggested little dietary overlap between 

these two morphs (Harvey & Kitchell, 2000; Harvey et al., 2003; Ray et al., 2007; Gamble et al., 

2011b). Dietary overlap and resource partitioning have not been quantified between humper or 

redfin and the other morphs.  

As humper have been used in some recent stocking efforts (Markham et al., 2008), 

quantifying trophic niche overlap between humpers and the other morphs is of interest for 

predicting potential competitive interactions and resiliency to stressors. The purpose of this 

research was to quantify trophic niche overlap (as determined by stable isotope ratios of δ13C , 

δ15N , δ34S , and fatty acid profiles) among the four morphs of Lake Trout in Lake Superior, and 

determine if the humper morph occupies a different trophic niche compared to other morphs. 

Because there is some overlap in prey consumption among morphs, I hypothesized that there 

would be some trophic niche overlap among Lake Trout morphs, but that the degree of overlap 

would vary between morphs. Specifically, I predicted that humpers would occupy a different 

niche from the other Lake Trout morphs, and that their niche region would be the smaller than 
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the other morphs, reflecting their consumption of primarily Mysis and small bodied fishes.  I also 

predicted that siscowets would have the largest niche region of the four Lake Trout morphs 

(reflecting DVM behaviour)  

Quantifying niche space and trophic overlap of Lake Trout morphs is critical for inferring 

inter-morph partitioning of resources. By understanding the resource needs and degree of overlap 

among morphs, predictions about stocking success can be made when a specific morph or set of 

morphs are introduced into a new environment.  

 

3.2 Methods 

Study Site and Collection Methods 

Two sites, Superior Shoal (48° 3'43.54" N, 87° 8'52.57" W) and Stannard Rock 

(47°12'26.26" N, 87°12'3.82" W) were sampled in Lake Superior during cruises on the R/V Kiyi 

(Figure 2.1). Superior Shoal and Stannard Rock were selected as study sites because they were 

known to support humper, lean, and siscowet Lake Trout morphs; when the study was designed, 

redfins had not yet been formally described in the literature, and it was not known if they would 

be present at these two sites. 

Lake Trout were collected via gill nets in 2013 and 2014. Nets were set over night 

(between 12 and 24 hours). Three different depth ranges were sampled, 0-50m (ten nets) 50-

100m (nine nets) and 100-150m (nine nets); these correspond to the depth ranges thought to be 

occupied by the morphs. Gill nets were multifilament nylon twine, 183-m long by 1.8-m high 

with 30.5-m panels ranging from 50.8 to 114.3 mm, in 12.7-mm increments. Total length (mm), 

wet weight (g), sex, and maturity for each Lake Trout were determined upon capture. Dorsal, 

skinless muscle samples were removed from each Lake Trout for stable isotope and fatty acid 
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analyses. Because determination of morphs is sensitive to fish size (Zimmerman et al., 2006) 

only Lake Trout > 300mm in total length were analyzed further.  

  

Assignment of Lake Trout Morphs 

 Morphometric analysis (Perreault-Payette, 2016) and visual identification (performed by 

A. Muir, C. Krueger, and C. Bronte) were used to assign each captured Lake Trout (> 300 mm 

total length) to a morph. Lateral photographs of each fish were used to quantify size-free body 

and head shape via geometric morphometrics (Muir et al., 2014). These digitized points were 

analyzed using the MCLUST R package (Fraley & Raftery, 2009), which assigned individual 

fish a morph identity based on the head and body models. Three visual assignments per fish were 

generated by three experienced researchers: Charles Bronte (U.S. Fish and Wildlife Service), 

Andrew Muir (Great Lakes Fishery Commission), and Charles Krueger (Michigan State 

University). At least two of the three visual assignments had to agree for a fish to be given a 

visual identification. The visual identifications were then compared with results of morphometric 

models. If two of three of the assignments (visual, head, and body) agreed, the fish was given 

that morph assignment. If none of the models agreed, the fish was not assigned a morph and 

excluded from further analysis.  

This dual method of morph identification was employed for all morphs except humper, 

due to their smaller sizes at maturity. Sensitivity of morphometric analysis is decreased for fish 

less than 430 mm (Zimmerman et al., 2006), and mean size at maturity of humpers is ~450 mm 

(Hansen et al., 2016); therefore, in the case of humpers, only visual identifications were used. 

Out of 901 Lake Trout captured, 419 were assigned a morph identification.  
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Fatty Acid Analysis 

Lipids were extracted using a modified Folch method (Folch et al., 1957; Budge et al., 

2006). Freeze-dried skinless dorsal muscle tissue was used for Lake Trout. Approximately 0.2 g 

of tissue was treated with a 2:1 chloroform-methanol solution containing 0.01% butylated 

hydroxytoluene (BHT) (v/v/w) and refrigerated overnight. The lipid phase was then separated, 

dried with anhydrous sodium sulphate and evaporated under nitrogen to obtain total lipid mass. 

Fatty acid methyl esters (FAMEs) were produced from extracted lipids by transesterification 

with Hilditch reagent (100:1 parts dry methanol to H2SO4 v/v) (Morrison & Smith, 1964). 

Samples were heated to 100°C for 1 hour, back extracted with hexane and dried with anhydrous 

sodium sulphate. The FAME layer was removed and evaporated under nitrogen until dry and 

weighed. Finally, FAMEs were diluted in hexane to a concentration of 0.20mg/mL. 

 FAMEs were analyzed at the Freshwater Institute (Winnipeg, Manitoba). Gas 

chromatographic (GC) analysis was performed on an Agilent Technologies 7890N GC equipped 

with a 30-m J&W DB-23 column (0.25-mm I.D; 0.15-μm film thickness). The GC was coupled 

to a Flame Ionization Detector (FID) operating at 350 oC. Hydrogen was used as carrier gas 

flowing at 1.25 mL/min for 14 minutes and ramped to 2.5 mL/min for the remainder of the run. 

The split/splitless injector was heated to 260 oC and run in splitless mode with a 50 psi pressure 

pulse for 1.25 minutes. The oven program was as follows: 60 oC for 0.66 min; 22.8 oC/min to 

165 oC with a 2.0 min hold; 4.7 oC/min to 174 oC and 7.6 oC/min to 200 oC with a 6 min hold. 

Peaks were quantified using Agilent Technologies ChemStation software. Fatty acid standards 

were obtained from Supelco (37 component FAME mix) and Nuchek (54 component mix GLC-

463). Eighty FAMEs were identified via retention time and known standard mixtures and are 

reported as percent of total fatty acid. Each fatty acid is described using the shorthand 
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nomenclature of A:Bn-X, where A represents the number of carbon atoms, B the number of 

double bonds and X the position of the double bond closest to the terminal methyl group. Fatty 

acids are reported as % total FAME content. A total of 210 Lake Trout samples (30 per morph 

per site) were analyzed for fatty acids. 

 

Stable Isotope Analysis 

Samples from 210 Lake Trout (30 per morph per site, excluding redfins from Stannard 

Rock; low sample size precluded analysis of redfins at Stannard Rock), and 120 prey fishes 

(fifteen per species per site) were analyzed for δ13C, δ15N, and δ34S. Lake Trout dorsal muscle 

samples (skin off) were freeze dried and ground into a fine powder before being weighed for 

stable isotope analysis (SIA).  

 Ratios of stable carbon and nitrogen isotopes were determined at the University of 

Waterloo Environmental Isotopes Laboratory (UWEIL) on a 4010 Elemental Analyzer (Costech 

Instruments) coupled to a Delta XL (Thermo-Fisher) continuous flow isotope ratio mass 

spectrometer (CFIRMS). Sulfur isotopes were analyzed on a 4010 Elemental Analyzer (Costech 

Instruments) coupled to an Isochrom (GVInstruments / Micromass UK) CFIRMS. Isotope ratios 

are reported in δ notation, which is calculated as: 

𝛿𝑗𝑋 = [
(

𝑋 
𝑗

𝑋 
𝑖 ) 𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑋 

𝑗

𝑋 
𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1] ×1000 (Equation 2) 

 

where jX is the heavier isotope (e.g., 15N), and iX the lighter isotope (e.g., 14N) in the sample 

(numerator) and international measurement standard (denominator). Atmospheric nitrogen is the 

standard for δ15N, Vienna PeeDee Belemnite for δ13C, and Canyon Diablo triolite for δ34S (see 

Gonfiantini et al., 1995). All values are reported in parts per mil (‰). Analytical error for δ13C, 
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δ15N, and δ34S did not exceed 0.2‰, 0.3‰, or 0.3‰ based on corrections made using an array of 

international reference material and in-house standards that were calibrated using certified 

international reference materials (i.e. IAEA-N1 + N2, IAEA-CH3 + CH6, USGS-41 + 41, IAEA-

SO-5, IAEA-SO-6, NBS-127, NBS-123, IAEA-S1 to-S3). Of the total sample number analyzed 

in an analytical run, no less than 20% were Std/Ref materials. Repeatability of samples (one in 

10) for δ13C, δ15N, and δ34S was 0.2‰, 0.3‰, and 0.3‰. 

 

Lipid Correction Models 

As lipids have been shown to be depleted in δ13C (Kiljunen et al., 2006; Hoffman & 

Sutton, 2010), lipid correction models were used to correct Lake Trout δ13C values for effects of 

lipid bias. A correction equation (see Appendix I) was developed based on mass balance models 

presented by Hoffman and Sutton (2010), and applied to individuals of all morphs with C:N 

ratios > 4.0, which was used as the minimum C:N ratio to perform lipid corrections as 

recommended by Hoffman et al. (2015). Lipid corrected δ13C values were estimated as follows: 

 

𝛿13𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝛿13𝐶𝑏𝑢𝑙𝑘 + [∆𝛿13𝐶𝑏𝑢𝑙𝑘×(
𝐶:𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝐶:𝑁𝑏𝑢𝑙𝑘

𝐶:𝑁𝑏𝑢𝑙𝑘
)] (Equation 3) 

 

Where δ13Cprotein is the δ13C ratio of the lipid extracted sample, δ13Cbulk is the δ13C ratio of the 

non-extracted sample, Δδ13Cbulk is the isotopic depletion factor due to lipids, C:Nprotein is the C:N 

ratio in the extracted sample, and C:Nbulk is the C:N ratio in the non-extracted sample. Δδ13Cbulk 

and C:Nprotein were estimated for each morph and species that had C:Nbulk  > 4.0 at each site (see 

Appendix I for model selection methods). Superior Shoal leans and Stannard Rock humpers each 

had 2 outliers (leans: Δδ13Cbulk=-17.8‰, -268.7‰; humpers: Δδ13Cbulk = -28.9‰, -30.0‰) that 
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were not included in calculating average Δδ13Cbulk or C:Nprotein, as these values were ~2-4 times 

larger than the literature values reported for Δδ13Cbulk of ~7 (Kiljunen et al., 2006; Hoffman & 

Sutton, 2010).  

 

Statistical Analysis 

Statistical analyses were conducted using R software version 3.3.1 (R Core Team, 2016). 

Analyses were performed separately for each site. A number of statistical techniques aimed at 

quantifying ecological niche size have been developed in recent years. (e.g., Jackson et al., 2011; 

Syvaranta et al., 2013; Swanson et al., 2015; Rossman et al., 2016). One technique, called 

NicheROVER (Lysy et al., 2014) was developed using a Bayesian framework in the statistical 

program R and quantifies probabilistic pairwise n-dimensional overlap in niche space among any 

number of species (Swanson et al., 2015). I used stable isotope ratios and fatty acid biomarkers 

in NicheROVER to quantify trophic niche (hereafter referred to as niche) size and overlap 

among the four morphs of Lake Trout in Lake Superior, and to determine if humpers occupy a 

different niche compared to the other morphs. The three stable isotope ratios were selected for 

inclusion in the analysis as they reflect the diets (δ15N) and origin of production sources (δ13C, 

δ34S) for Lake Trout morphs (e.g., Deniro & Epstein, 1981; France, 1995; Croisetiere et al., 

2009). Fatty acids were selected based on their use as dietary biomarkers (Chapter 2, this thesis). 

Using linear discriminant analysis, 30 fatty acids known to reflect diet were compared among 

Lake Trout morphs (Chapter 2, this thesis). The LDA scores for each morph from the first (and 

significant) axis (LD1) were used with stable isotope data to quantify niches and niche overlap 

for each pairwise combination of morphs. Prior to analysis, these four niche dimensions were z-

score transformed, to ensure all four dimensions were on the same scale. 
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Data were determined to reasonably satisfy multivariate normal assumptions through 

analysis of a Chi-Square Q-Q plot, and the default uninformative prior was used for all 

calculations (Lunn et al., 2013; Swanson et al., 2015). A sample size of 30 Lake Trout per morph 

was used in the analysis (each sample was represented by δ13C, δ34S, δ15N ratios, and an LD1 

score); previous research has shown that 30 is the minimum number of samples necessary for 

Bayesian comparisons of isotopic niches (Syvaranta et al., 2013). The four-dimensional 95% 

probabilistic niche region was quantified, along with probabilities of pairwise overlap.  

 

3.3 Results 

Probabilistic (95%) niche regions were determined for each morph at each site. At both 

sites, humpers had the largest niche region, and siscowets and leans had similarly sized niche 

regions (Figure 3.2). Redfins had the smallest niche region at Superior Shoal. Niche regions can 

be visualized for each dimension from the density (diagonal) plots in Figure 3.3 and 3.4. 

Consistent with the results of Chapter 2, LD1 scores from dietary fatty acid data 

differentiated among morphs more than stable isotope ratios. Of the three isotopes, the largest 

differences among morphs were observed in δ34S, though substantial overlap among morphs in 

all three isotopes was observed (Figure 3.3, Figure 3.4). 

At Superior Shoal, pairwise overlap between morphs was most likely to occur with 

humpers, with a 70% probability of a redfin falling within the humper niche, and an 83% 

probability of a siscowet falling within the humper niche (Table 3.1, Figure 3.5). The probability 

of finding a lean within the niche of humper was only 53%, and the niches of humper and lean 

were mainly differentiated by fatty acid signatures and δ34S ratios (Table 3.1, Figure 3.3). 

Interestingly, the lowest probability of niche overlap was between the redfins and leans; there 
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was only a 9% probability of finding a lean within the redfin niche, and a 25% probability of 

finding a redfin within the lean niche (Table 3.1; Figure 3.5). The niches of redfins and leans 

were mostly differentiated by fatty acid signatures (LD1) (Figure 3.3).  

Pairwise overlap at Stannard Rock was most likely to occur between leans and siscowets 

(Table 3.1; Figure 3.6); whereas leans and siscowets were differentiated by fatty acid signatures 

(LD1) at Superior Shoal, LD1 scores were very similar between these two morphs at Stannard 

Rock (Figure 3.4). The lowest probability of niche overlap at Stannard Rock occurred between 

humpers and leans; there was a 23% probability of finding a humper in the lean niche, and a 32% 

probability of finding a lean in the humper niche (Table 3.1, Figure 3.6). The niches of humpers 

and leans were differentiated by LD1, but also by δ34S ratios and δ15N ratios (Figure 3.4). 

However, if pairwise comparisons involving redfin are ignored from Superior Shoal, the lowest 

probability of overlap was also that of humpers onto leans (Table 3.1).  

 

3.4 Discussion 

Humpers had the largest niche regions of all morphs at both Superior Shoal and Stannard 

Rock. This was contrary to my prediction, as I expected humpers would have the smallest niche 

region, and siscowets would have the largest. Because humpers appear to feed primarily on 

Mysis and small bodied prey fishes such as Deepwater Sculpin (Stafford et al., 2014; this thesis), 

I expected humpers would have a smaller niche compared to vertically migrating siscowets that 

consume prey across a variety of habitats (Hrabik et al., 2006; Zimmerman et al., 2009; Gorman 

et al., 2012a). However, stomach content analysis from humpers in this study revealed that 

humper diets are roughly 50% fish and 50% Mysis (Chapter 2, this thesis). Due to the limitations 

of morphometric identification, a majority of the Lake Trout examined in this study were >400 
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mm total length, roughly the size when Lake Trout shift to a primarily piscivorous diet 

(Zimmerman et al., 2009; Isaac et al., 2012). Stomach content results were consistent with a 

piscivorous diet in adult Lake Trout, as stomach contents from lean, siscowets, and redfin 

stomachs were predominately fish (by mass) (Chapter 2, this thesis). Therefore, the larger niche 

observed in humpers could be a result of humpers feeding on both piscivorous and planktivorous 

resources, opposed to primarily piscivorous resources like the other three morphs (at least by 

mass). Siscowets and leans had similar sized niches at both sites, and redfins had the smallest 

niches of all four Lake Trout morphs, indicating that redfins may be more specialized in their 

prey consumption than the other three morphs.  

Interestingly, niche size was similar between sites for all Lake Trout morphs, even 

though niche overlap was observed to differ between sites. Pianka (1974) hypothesized that a 

greater amount of niche overlap could suggest less competition among organisms when 

resources are plentiful. This has been supported by studies showing niche overlap among 

sympatric species, and even within species (Santos-Carvallo et al., 2015; Vluet et al., 2015; Yang 

et al., 2016). As the niche size of Lake Trout morphs doesn’t appear to change in response to 

differences in niche overlap, this suggests morphs are tolerant of some degree of overlap with 

each other, possibly because prey resources are not limiting. However, without measurements of 

prey density at each site, conclusions about the effects of niche overlap on the niche size of Lake 

Trout morphs cannot be drawn at this time. 

 I observed site-specific differences in niche overlap among Lake Trout morphs, as there 

was higher probability of overlap between siscowets and leans at Stannard Rock compared to 

Superior Shoal. At Stannard Rock, there was >50% probability of siscowets overlapping onto the 

niche of leans, and >70% probability of leans overlapping onto the niche of siscowets. These 
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results from Stannard Rock are contrary to previous studies, where investigators observed 

differences between lean and siscowet diets, and low dietary overlap between these two morphs 

(Harvey et al., 2003; Ray et al., 2007; Gamble et al., 2011a; Gamble et al., 2011b). There are 

some differences between previous studies and this study that may help explain this discrepancy. 

Ray et al., (2007) examined spring diets of leans and siscowets in Lake Superior, and Gamble et 

al., (2011b) specifically examined nearshore sites in Lake Superior with average depths ~40m. It 

is possible that competition between morphs was greater in these studies, and overlap therefore 

smaller, because prey was more limiting in spring and in shallow habitats, but this requires 

further investigation. I observed similar prey items in the stomach contents of leans and 

siscowets at Stannard Rock (e.g., Mysis, coregonids, Deepwater Sculpin) (Chapter 2, this thesis), 

as well as similarities in fatty acids profiles and stable isotope ratios (Chapter 2, this thesis). In 

particular, δ34S ratios were much more similar between these two morphs at Stannard Rock than 

at Superior Shoal. This is likely a result of the habitat differences between the two sites; Stannard 

Rock is 20km closer to shore, and 100m shallower than Superior Shoal. It is possible that spatial 

overlap between the two morphs is greater at Stannard Rock than at Superior Shoal, which 

suggests that they may be more likely to consume similar resources, and suggests that niche 

overlap among morphs is likely driven by a combination of prey availability, and habitat 

availability and heterogeneity (e.g., range of depths).  

Siscowet niches had the highest probability of overlapping onto humper niches at both 

Superior Shoal and Stannard Rock, and humper niches had the highest probability of overlapping 

onto siscowet niches at Superior Shoal. The relatively high degree of niche overlap between 

these two morphs at Superior Shoal is likely a result of common prey consumption (i.e., 

Deepwater Sculpin and Mysis), and spatial overlap in depth (Rahrer, 1965; Harvey & Kitchell, 
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2000), and is consistent with my prediction of humpers and siscowets having overlapping niches. 

At Stannard Rock, leans had the highest probability of overlapping onto the niche of siscowets. 

This could be a reflection of the fact that depth ranges occupied by each morph likely differ with 

available depths, and thus between sites.   

Redfins and leans at Superior Shoal had the lowest probabilities of niche overlap out of 

all the morphs. Even though redfins spatially overlap with leans (Muir et al., 2014; Hansen et al., 

2016), and had similar stable isotope ratios, the niche overlap between these two morphs was 

extremely small. Stomach contents revealed similarities between redfins and siscowets diets 

(Chapter 2, this thesis), though most fish present in stomachs were not identifiable. The largest 

differences between leans and redfins were in dietary fatty acid signatures (Chapter 2, this 

thesis). As adequate sample size for redfins was only achieved at Superior Shoal, it is impossible 

to determine if this trend would be consistent among sites, or if minimal overlap between redfins 

and leans is specific to Superior Shoal. 

Lean Lake Trout were used exclusively to stock the Great Lakes until the initial 

introduction of a humper strain (“Klondike”) to Lake Erie in 2004 (Markham et al., 2008; Muir 

et al., 2012). The use of Klondikes in Lake Erie have led to the consideration of stocking 

alternative morphs (e.g., humper) in other Great Lakes by fishery managers (Bronte et al., 2008; 

Muir et al., 2012). My observations suggest that humpers may be more appropriate candidates 

than siscowets for stocking in areas already occupied by leans. Humpers showed the lowest 

probability of overlapping onto the niche space of leans at both sites (excluding redfins from 

Superior Shoal). However, these results showed overlap probabilities between adult humpers and 

adults leans. As has been demonstrated, a large proportion of humper diet is composed of Mysis 

(Stafford et al., 2014; this thesis), which is similar to that of juvenile Lake Trout of all morphs 
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(Zimmerman et al., 2009; Isaac et al., 2012; Stafford et al., 2014). This suggests that humpers 

may have increased niche overlap with juvenile Lake Trout morphs instead of adults. Further 

research is necessary, as increased competition with juveniles could impede stocking efforts. 

These estimates of niche size and overlap may serve as a benchmark for future research, 

as a variety of factors may change or influence how Lake Trout morphs partition resources. A 

recent survey of Lake Superior by the USGS found declines in coregonid, Rainbow Smelt, and 

Lake Trout biomass (Gorman et al., 2013). These declines seem to be related – prey fishes have 

been declining since the 1990’s, and Lake Trout biomass began to decline in the 2000’s, most 

likely as a response to decreased prey availability (Gorman et al., 2013). If prey fishes continue 

to decline, it may drive increased competition among Lake Trout morphs for prey resources, 

resulting in declines of less adapted morphs. Contrary to previous studies (Harvey et al., 2003; 

Ray et al., 2007; Gamble et al., 2011b), there was no evidence of Rainbow Smelt consumption (a 

dominant prey item) by leans, (Harvey et al., 2003; Ray et al., 2007; Gamble et al., 2011b). 

Declines in Rainbow Smelt abundance may be forcing leans to consume other prey, which may 

be why lean diets were very similar to siscowets at Stannard Rock, and why niche overlap was 

greater between leans and siscowets at Stannard Rock compared to Superior Shoal. However, 

further research is necessary, as it is possible leans are still consuming Rainbow Smelt, but they 

were not detected in stomachs. Another factor that could affect niche overlap among morphs is 

climate change. Lake Superior has been steadily warming since the 1980s, and the preferred 

thermal habitat for leans has been expanding, while the preferred thermal habitat for siscowets 

has been declining (Cline et al., 2013). This suggests that habitat overlap among morphs may 

increase as climate change continues, which may increase competition among morphs for 

resources.  
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Conclusion 

The trophic niches of Lake Trout morphs in Lake Superior were shown to overlap, 

suggesting that, as expected, none of the Lake Trout morphs occupy a completely separate 

trophic niche. This likely reflects the generalist trophic ecology of Lake Trout feeding; data to 

date indicate that all morphs previously studied consume a variety of prey (Harvey et al., 2003; 

Ray et al., 2007; Gamble et al., 2011a; Gamble et al., 2011b, Chapter 2, this thesis). The amount 

of pairwise niche overlap varied among morphs, however, with certain morphs exhibiting greater 

niche overlap than others. This was consistent with my predictions. Contrary to my predictions, 

humpers had the largest niche regions, possibly reflecting heavy reliance on Mysis, whereas 

redfins had the narrowest niche regions, suggesting that redfins are the most specialized morphs. 

The least amount of niche overlap was observed between leans and redfins at Superior Shoal, 

and the most overlap was observed between humpers and siscowets at Superior Shoal, and leans 

and siscowets at Stannard Rock. Pairwise overlap in trophic niches varied between sites.  

Knowledge of niche overlap among morphs can be informative to policy makers for Lake 

Trout management practices. Previous studies have demonstrated minimal trophic overlap 

between leans and siscowets, as they consume different prey items and differ in stable isotope 

ratios (Bronte et al., 2003; Harvey et al., 2003; Ray et al., 2007; Gamble et al., 2011a; Gamble et 

al., 2011b). However, my observations show that the trophic overlap among leans and siscowets 

differed between sites, and that niche overlap between leans and siscowets can be substantial. It 

appears that it may be appropriate for managers to consider site-specific stocking programs, as it 

is clear that the amount of niche overlap between morphs can vary between sites. Humpers, 

however, had low niche overlap with leans at both Superior Shoal and Stannard Rock, which 

suggests humpers may be appropriate to stock concurrently with leans regardless of habitat 
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conditions, and may help future stocking programs maximize the genetic diversity of Lake Trout 

populations in the other Great Lakes. Future research should examine niche overlap at other sites 

in Lake Superior (e.g., Isle Royale), prey density, seasonal variability in diet, and seasonal 

variability in habitat use to investigate variability in niche overlap among sites; this information 

may aid in informing future Lake Trout management decisions. 
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3.5 Figures and Tables 

 

 
Figure 3.1. Location of sampling sites in Lake Superior.   
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Figure 3.2. Probabilistic 95% niche region of morphs from a) Superior Shoal, and b) Stannard Rock. Results 

indicate humpers had the largest niche region, siscowets and leans had similar size niche regions, and redfins had the 

smallest niche regions. 
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Figure 3.3. 7 randomly drawn elliptical projections of the 95% niche regions for each morph and niche dimension 

(stable isotope ratios of δ13C, δ15N, δ34S, and fatty acid profiles, LD 1) at Superior Shoal. Data was converted to a z-

score prior to analyses. Ellipses (above the diagonal) represent two-dimensional projections of niche regions for 

each morph. Also presented are two-dimensional scatter plots (below the diagonal), and one-dimensional density 

plots (on the diagonal). While there was substantial overlap in each dimension of niche space, LD 1 (fatty acids) 

showed the least overlap among morphs. 
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Figure 3.4. 7 randomly drawn elliptical projections of the 95% niche regions for each morph and niche dimension 

(stable isotope ratios of δ13C, δ15N, δ34S, and fatty acid profiles, LD 1) at Stannard Rock. Data was converted to a z-

score prior to analyses. Ellipses (above the diagonal) represent two-dimensional projections of niche regions for 

each morph. Also presented are two-dimensional scatter plots (below the diagonal), and one-dimensional density 

plots (on the diagonal). While there was substantial overlap in each dimension of niche space, LD 1 (fatty acids) 

showed the least overlap among morphs. 
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Figure 3.5. Posterior distribution of the probabilistic niche overlap metric (%) for the 95% niche regions of Lake 

Trout morphs from Superior Shoal. Plots show the overlap probability of morph A (row) onto the niche of morph B 

(column). Solid blue lines show the mean overlap probability, while dashed blue lines indicate the 95% credible 

interval.  

 

  



85 

 
Figure 3.6. Posterior distribution of the probabilistic niche overlap metric (%) for the 95% niche regions of Lake 

Trout morphs from Stannard Rock. Plots show the overlap probability of morph A (row) onto the niche of morph B 

(column). Solid blue lines show the mean overlap probability, while dashed blue lines indicate the 95% credible 

interval.  
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Table 3.1. Summary of niche overlap among Lake Superior Lake Trout morphs. Presented are the mean 95% 4-

dimensional niche region sizes of each morph, the mean overlap probability of 95% niche regions (probability of 

morph A overlapping with morph B), and 95% credible intervals.  

 

 

  

Morph B 
 

95% niche region 
size 

Morph A FA and SI mean overlap 
probability [credible interval] 

Superior Shoal    

Humper 
 

269.40 Lean 
Redfin 
Siscowet 

53.52[30.46, 79.79] 
70.34[45.72, 91.77] 
83.04[67.30, 94.93] 

Lean 
 

159.79 Humper 
Redfin 
Siscowet 

37.02[18.19, 61.07] 
25.39[5.67, 59.42] 
38.11[19.40, 61.54] 

Redfin 
 

79.46 Humper 
Lean 
Siscowet 

36.76[20.16, 56.29] 
9.83[2.24, 24.44] 
34.89[18.56, 56.68] 
 

Siscowet 
 

153.39 Humper 
Lean 
Redfin 

59.63[42.50, 77.13] 
48.31[27.29, 72.34] 
49.75[27.41, 73.41] 

    
    

Stannard Rock    

Humper 
 

219.32 
 

Lean 
Siscowet 

32.01[12.57, 60.79] 
53.43[31.87, 76.79] 

Lean 
 

99.80 
 

Humper 
Siscowet 

22.71[8.12, 43.33] 
58.91[40.31, 78.24] 

Siscowet 
 

130.86 Humper 
Lean 

34.90[17.22, 56.91] 
71.59[51.15, 88.34] 
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Chapter 4 
 

General Conclusions and Future Areas of Study 
4.1 Conclusion 

 

This research sought to characterize and compare the diets of humper Lake Trout relative 

to other Lake Trout morphs in Lake Superior and quantify the size and probability of trophic 

niche overlap among morphs to determine if humpers occupy a different trophic niche than the 

other morphs. Using both direct (i.e., stomach content analysis) and indirect (i.e., stable isotope, 

fatty acid analyses) methods, diets of Lake Trout morphs were characterized at two sites within 

Lake Superior: Superior Shoal and Stannard Rock. Stomach content analyses revealed 

similarities in the diets of all Lake Trout morphs, with prey such as Mysis, coregonids, and 

Deepwater sculpin appearing in lean, siscowet, and redfin stomachs. Deepwater sculpin was the 

only identifiable fish found in humper stomachs, suggesting this might be a dominant prey fish 

for humpers. Mysis was identified as a common prey item for all morphs, but accounted for a 

much larger biomass contribution to humper stomachs than to stomachs of other morphs. This 

agrees with the findings of previous authors who have reported that humpers have planktivorous 

diets (Stafford et al., 2014), though my findings show that their diets are almost equal parts fish 

and Mysis. Fatty acid analyses demonstrated differences in both dietary and non-dietary fatty 

acids among morphs, and provided novel insight into humper and redfin fatty acids in Lake 

Superior; redfin diets were the most different from the other three morphs, and humper diets 

were most similar to siscowets at Superior Shoal, but differed at Stannard Rock. This is 

consistent with previous literature, which shows that Lake Trout morphs differ both in diet 

(Harvey et al., 2003; Ray et al., 2007; Gamble et al., 2011a; Gamble et al., 2011b) and 

metabolism (Eschmeyer & Phillips, 1965; Goetz et al., 2010; Goetz et al., 2014), and is 

consistent with stomach content observations showing some differences among morph diets 
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(Chapter 2, this thesis). Stable isotope analyses demonstrated that Lake Trout morphs do not 

differ in relative trophic position or carbon source. Sulfur stable isotopes may suggest possible 

differences among morphs in profundal inputs, though further investigation is required. These 

results suggest that Lake Trout morphs do not greatly differ in diet, which contradicts the 

stomach content and fatty acid results. However, stable isotopes integrate diet information on a 

long temporal scale (6-12 months) (Hesslein et al., 1993), so seasonal variations in diet might not 

be detectable with this method. Therefore, Lake Trout morph diets may be similar over the 

course of a year, but seasonally different from each other. 

Trophic niche overlap analyses demonstrated that niche overlap occurs among Lake 

Trout morphs, but this overlap is usually < 50%. There was evidence of site-specific differences 

in resource partitioning (inferred by probabilities of niche overlap) among Lake Trout morphs, as 

pairwise niche overlap between morphs differed between sites. This was likely due to a 

combination of factors, such as habitat depth that varied between sites, and suggests that resource 

partitioning between morphs is not fixed, and that morph feeding strategies are likely influenced 

by both prey availability  and their physical environment (e.g., depth).  

This research contributes to the understanding of Lake Trout ecology in Lake Superior, 

and may be useful for informing Lake Trout management practices. Leans and humpers are used 

as stocking fish for the other four Great Lakes (Erie, Huron, Michigan, Huron) (Muir et al., 

2012). My findings showed humpers had < 40% probability of overlap onto the trophic niche of 

leans, which suggests competition between these two morphs is likely to be low. While more 

research is required, these results suggest concurrent stocking of leans and humpers is not likely 

to impede the stocking successes of these morphs. However, as these niche overlap models were 
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performed on adult Lake Trout, future research should focus on examining possible niche 

overlap of adult humpers with juvenile Lake Trout of other morphs.  

My findings showed site-specific differences in niche overlap among siscowets and leans. 

Siscowets had a 38% probability of overlap onto lean niches at Superior Shoal, compared to 58% 

probability of overlap onto lean niches at Stannard Rock. This suggests managers should 

consider a site-specific approach to Lake Trout management, as certain environments may 

facilitate greater niche overlap among morphs than others. While more research is needed to 

determine the potential drivers of site-specific differences in niche overlap, it is likely a result of 

prey availability or habitat heterogeneity. Redfins were identified as having the lowest niche 

overlap with leans, suggesting redfins may also be a suitable candidate for concurrent stocking 

with leans. However, the extent to which niche overlap varies between leans and redfins among 

seasons and between sites is unknown, and further research is required before the possibility of 

stocking redfins can be properly evaluated. 

My research also highlights the importance of Mysis as a prey item to all four Lake Trout 

morphs examined in this study. Previous studies have shown the importance of Mysis to many 

species of fishes, as Mysis integrates many basal resources (Ahrenstorff et al., 2011; Sierszen et 

al., 2011). This is consistent with my fatty acid results, which indicate Mysis is a source of many 

essential fatty acids for Lake Trout morphs. Therefore, managers may be interested in 

monitoring Mysis populations, especially in areas of heavy Lake Trout stocking, as they appear 

to be a vital resource to not only Lake Trout, but many other fish species (Ahrenstorff et al., 

2011; Gamble et al., 2011a; Gamble et al., 2011b; Sierszen et al., 2011). 

Future research could focus on examining seasonal differences in Lake Trout diets. 
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One drawback of stomach content analysis is the lack of temporal resolution, and fatty acids 

integrate roughly 2 months of diet information (Happel et al., 2016). Thus, my observations 

reflect the summer diets of Lake Trout morphs. Since the diets of leans and siscowets vary 

among seasons (Ray et al., 2007; Gamble et al., 2011a; Gamble et al., 2011b), it is likely that 

redfins and humpers may experience seasonal changes in diet as well. Therefore, future research 

examining the fall and spring fatty acid profiles of these Lake Trout morphs, or tissues with 

higher turnover rates of fatty acids (see Budge et al., 2006) would contribute to further 

understanding dietary differences among Lake Trout morphs.  
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Appendix 
 

A.1 Lipid Correction Models 

As lipids have been shown to be depleted in δ13C (Kiljunen et al., 2006; Hoffman & 

Sutton, 2010), lipid correction models were used to correct Lake Trout and prey δ13C values for 

effects of lipid bias. A subset of 120 Lake Trout (30 per morph), 54 prey fishes (8 per species per 

site, except Bloaters, where n=6), and 7 pooled invertebrate samples (Mysis, zooplankton, and 

moths) were lipid extracted using a modified Folch method (Folch et al., 1957; Budge et al., 

2006), and δ13Cextracted ratios were estimated based on mass balance models presented by 

Hoffman and Sutton (2010). Dorsal muscle was used for Lake Trout lipid extractions, whereas 

whole bodies were homogenized and extracted for prey fishes and invertebrates. Samples of 

Diporeia, snails, clams, and Rainbow Smelt were not subject to lipid extraction due to lack of 

sample mass. Rainbow Smelt also had C:N ratios < 4.0, which was used as the minimum C:N 

ratio to perform lipid corrections, as recommended by Hoffman et al. (2015). Lipid corrected 

δ13C values were estimated as follows: 

 

𝛿13𝐶𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝛿13𝐶𝑏𝑢𝑙𝑘 + [∆𝛿13𝐶𝑏𝑢𝑙𝑘×(
𝐶:𝑁𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝐶:𝑁𝑏𝑢𝑙𝑘

𝐶:𝑁𝑏𝑢𝑙𝑘
)] (Equation 3) 

 

Where δ13Cprotein is the δ13C ratio of the lipid extracted sample, δ13Cbulk is the δ13C ratio of the 

non-extracted sample, Δδ13Cbulk is the isotopic depletion factor due to lipids, C:Nprotein is the C:N 

ratio in the extracted sample, and C:Nbulk is the C:N ratio in the non-extracted sample.  

 While established models have been demonstrated to sufficiently predict lipid corrected 

values (Hoffman et al., 2015), in some instances it may be more appropriate to develop models 

for a specific system or population, as general models may not accurately predict lipid 
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corrections for every species (Mintenbeck et al., 2008; Fagan et al., 2011). Four different models 

were evaluated for lipid correction. The first model used established values for Δδ13Cbulk and 

C:Nprotein of -6.5 ‰ and 3.5 respectively and was applied to all species, which Hoffman et al., 

(2015) used for Lake Trout in Western Lake Superior. The second model involved predicting 

Δδ13Cbulk and C:Nprotein for each morph/species at each site using average values of Δδ13Cbulk and 

C:Nprotein from the extracted samples. The third model used the established values of Δδ13Cbulk 

and C:Nprotein of -6.5 ‰ and 3.5 respectively for all morphs/species on samples with C:Nbulk > 

4.0. The fourth model estimated Δδ13Cbulk and C:Nprotein for each morph/species from averages of 

the extracted individuals that had C:Nbulk > 4.0 for each morph at each site. Superior Shoal leans 

and Stannard Rock humpers each had 2 outliers (leans: Δδ13Cbulk=-17.8‰, -268.7‰; humpers: 

Δδ13Cbulk = -28.9‰, -30.0‰) that were not included in calculating average Δδ13Cbulk or C:Nprotein, 

as these values were ~2-4 times larger than the literature values reported for Δδ13Cbulk of ~7 

(Kiljunen et al., 2006; Hoffman & Sutton, 2010)  

Figure A-1 illustrates the correction models compared to measured values. Model error 

and bias was quantified using methods described by Hoffmann and Sutton (2010). Model 4 had 

the lowest residual error and mean bias, followed by Model 2, Model 1, and finally Model 3 

(Table A-1). Using established literature values for Δδ13Cbulk and C:Nprotein was not appropriate to 

estimate lipid-corrected δ13C ratios in this system, as redfins from Superior Shoal and all three 

morphs from Stannard Rock had average Δδ13Cbulk values that varied from the established value 

of -6.5‰ (Table A-2). All Lake Trout morphs also had C:Nprotein values lower than the 

established literature value of 3.5 (Table A-2) (Hoffman et al., 2015), suggesting 3.5 is not the 

most appropriate estimate of C:Nprotein for Lake Trout at these sites. Δδ13Cbulk values appeared to 

be more similar among morphs within the same site, as Stannard Rock morphs had more 
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negative Δδ13Cbulk values than their Superior Shoal counterparts. Because of the observed 

variability in Δδ13Cbulk and C:Nprotein between sites, among morphs/species, and between these 

data and literature estimates, literature values were not used for further analyses. Instead, Model 

4 was used to generate lipid-corrected δ13C values that were then used in analyses of isotope 

data. 

 
 

Figure A-1 Measured vs estimated lipid-corrected δ13C values. Modelled values were plotted against measured 

values for a) Model 1, b) Model 2, c) Model 3, and d) Model 4. See text for a description model parameterization. 

The dotted line represents the 1:1 line. Model 4 was selected as the model to correct δ13C values throughout the 

thesis. 
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A.2 Supplementary Figures and Tables 

 
Table A-1. Model error summaries. Residual error was calculated as the average absolute difference between 

δ13Cextracted and δ13Cestimated (±1 S.D). Bias was calculated as the average difference between δ13Cextracted and δ13Cestimated 

Model Residual Error 
(SD) 

95% CI Range of 
Residuals 

RSS Mean Bias n 

1 0.71(0.42) 0.65-1.36 0.01-2.04 117.66 0.59 174 

2 0.32(0.35) 0.26-0.37 0.01-2.39 38.48 0.02 174 

3 0.68(0.41) 0.61-0.76 0.01-2.04 69.37 0.53 106 
4 0.30(0.35) 0.23-0.37 0.00-2.39 22.16 -0.02 106 

 

Table A-2. Parameter estimates for Model 2 and Model 4. Model 4 averages were calculated from only those fish 

with C:Nbulk ratios >4.0. 

Morph  Model 2   Model 4  

Superior Shoal n Δδ13Cbulk C:Nprotein n Δδ13Cbulk C:Nprotein 

Lean 13 -6.84 3.18 6 -7.08 3.19 
Siscowet 15 -6.28 3.13 7 -7.33 3.17 
Humper 15 -6.94 3.17 10 -7.57 3.21 
Redfin 30 -4.11 3.15 10 -6.11 3.19 
Kiyi 8 -6.63 3.60 8 -6.63 3.60 
Deepwater Sculpin 8 -8.83 3.52 8 -8.83 3.52 
       
Stannard Rock       

Lean 15 -9.69 3.09 3 -8.29 3.13 
Siscowet 15 -8.70 3.17 11 -8.43 3.19 
Humper 13 -8.70 3.13 11 -8.41 3.14 
Kiyi 8 -6.60 3.89 8 -6.60 3.89 
Deepwater Sculpin 8 -7.89 3.34 2 -6.75 3.37 
Bloater 6 -7.20 3.78 6 -7.20 3.78 
Cisco 8 -8.57 3.43 8 -8.57 3.43 
Pygmy Whitefish 8 -7.18 3.46 8 -7.18 3.46 
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Table A-3. Gill net sets performed in Lake Superior, 2013-2014. Lake Trout were captured between August 7-11 in 2013 and August 4-5 in 2014. Superior 

Shoal was not netted during the 2014 effort. 
Site Set Year Start Latitude (N) Start Longitude (W) Min Depth (m) Max Depth (m) Duration  

Stannard Rock LSSR13-11 2013 47 10.852 87 14.921 26 32 13 h 47 min 
Stannard Rock LSSR13-12 2013 47 11.340 87 15.145 116 136 13 h 58 min 
Stannard Rock LSSR13-13 2013 47 12.057 87 14.002 59 76 14h 25 min 
Stannard Rock LSSR13-14 2013 47 10.417 87 13.293 22 44 20 h 58 min 
Stannard Rock LSSR13-15 2013 47 10.713 87 14.293 35 42 21 h 12min 
Stannard Rock LSSR13-16 2013 47 10.187 87 11.634 124 129 21 h 20 min 
Stannard Rock LSSR13-17 2013 47 11.073 87 11.636 119 132 21 h 45 min 
Superior Shoal LSSS13-1 2013 48 01.772 87 07.205 123 144 15 h 10 min 
Superior Shoal LSSS13-10 2013 48 05.742 87 07.484 69 83 18h 29 min 
Superior Shoal LSSS13-2 2013 48 02.201 87 06.321 47 66 15 h 27 min 
Superior Shoal LSSS13-3 2013 48 02.460 87 05.919 32 35 16 h 
Superior Shoal LSSS13-4 2013 48 02.949 87 07.973 129 148 15 h 50 min 
Superior Shoal LSSS13-5 2013 48 03.134 87 07.227 41 77 16 h 14 min 
Superior Shoal LSSS13-6 2013 48 03.223 87 07 050 18 41 17 h 48 min 
Superior Shoal LSSS13-7 2013 48 03.582 87 12.344 104 142 16 h 52 min 
Superior Shoal LSSS13-8 2013 48 03.582 87 13.920 19 35 17 h 27 min 
Superior Shoal LSSS13-9 2013 48 03.113 87 11.729 136 155 18 h 17 min 
Stannard Rock 300 2014 47 14.114 87 08.383 113 124 17 h 5 min 
Stannard Rock 301 2014 47 14.720 87 08.813 76 88 17 h 45 min 
Stannard Rock 302 2014 47 12.081 87 08.813 59 76 18 h 30 min 
Stannard Rock 303 2014 47 11.656 87 13.983 33 36 18 h 40 min 
Stannard Rock 304 2014 47 10.875 87 14.922 28 33 19 h 30 min 
Stannard Rock 305 2014 47 11.354 87 15.131 117 137 18 h 25 min 
Stannard Rock 306 2014 47 13.961 87 08.049 135 145 23 h  
Stannard Rock 307 2014 47 14.166 87 09.566 50 82 22 h 45 min 
Stannard Rock 308 2014 47 14.166 87 09.566 28 32 19 h 30 min 
Stannard Rock 309 2014 47 10.901 87 14.890 29 31 19 h 20 min 
Stannard Rock 310 2014 47 11.183 87 14.715 55 86 19 h 50 min 
Stannard Rock 311 2014 Not Listed Not Listed 61 94 19 h 45 min 

 
Table A-4. Trawling efforts in Lake Superior, 2013 and 2015. Prey fishes were collected between August 9-10 in 2013, and June 4-6, July 12 in 2015. Trawling 

was not performed in 2014. Superior Shoal was only trawled in 2013.  
Site Location Year Start Latitude (N) Start Longitude (W) Start Depth (m)  End Depth (m) Duration (min) 

Superior Shoal LSSS13-11 2013 48 04.719 87 18.035 232 228 20 
Stannard Rock 055 2013 47 09.783 87 13.795 88 98 20 
Stannard Rock Not Listed 2013 47 09.453 87 11.311 120 150 20 
Stannard Rock 82 2015 46 58.743 88 23.734 17 67 20 
Stannard Rock 84 2015 46 53.546 88 19.247 119 140 20 
Stannard Rock 101 2015 47 22.812 87 48.651 20 36 20 
Stannard Rock 158 2015 46 56.292 88 08.284 15 54 20 
Stannard Rock 142 2015 46 51.161 87 43.754 18 62 20 
Stannard Rock 196 2015 46 46.664 87 33.662 29 72 20 
Stannard Rock 88 2015 46 31.351 86 55.428 29 85 20 
Stannard Rock 209 2015 46 31.661 86 42.921 30 95 20 
Stannard Rock 2150 2015 47 08.492 87 23.349 136 132 20 
Stannard Rock 2154 2015 47 04.342 87 09.927 182 182 20 



115 

Table A-5. Relative fatty acid concentrations for species at A) Superior Shoal and B) Stannard Rock. Fatty acids are measured as percentages ± 1 standard error. 

Species codes are as follows: Hump=Humper, Lean=Lean, Sis=Siscowet, DPSC=Deepwater Sculpin, Kiyi=Kiyi, Bloater=Bloater, Cisc=Cisco, RNSM=Rainbow 

Smelt, PGWH=Pygmy Whitefish Mys=Mysis, Dip=Diporeia, Zoo1= Zooplankton 63-250 µm, Zoo2=Zooplankton 250-500 µm, Clam=Clam, Snail=Snails, 

Moth=Moths 

 

2.10a. Superior Shoal Fatty Acids 
Fatty Acid Lean Sis Hump Red DPSC Kiyi Mys Zoop1 Zoop2 

12:0 0.099 ± 0.013 0.113 ± 0.010 0.141 ± 0.012 0.105 ± 0.009 0.175 ± 0.010 0.297 ± 0.012 0.101 ± 0.001 0.051 0.051 

12:1  0.125 ± 0.029 0.024 ± 0.008 0.053 ± 0.020 0.010 ± 0.001 0.031 ± 0.002 0.033 ± 0.001 0.000 0.026 0.032 

13:1  0.046 ± 0.004 0.054 ± 0.004 0.057 ± 0.004 0.050 ± 0.004 0.085 ± 0.005 0.105 ± 0.005  0.044 ± 0.002 0.067 0.066 

14:0 2.834 ± 0.240  3.196 ± 0.206 3.263 ± 0.217 2.533 ± 0.246  5.403 ± 0.211 6.586 ± 0.251 1.935 ± 0.015 2.302 2.054 

14:1n9 0.038 ± 0.003 0.029 ± 0.002 0.035 ± 0.003 0.021 ± 0.002 0.048 ± 0.002 0.049 ± 0.002  0.022 0.104 0.098 

14:1n7 0.110 ± 0.013 0.060 ± 0.004 0.069 ± 0.009 0.039 ± 0.002 0.060 ± 0.002 0.054 ± 0.003 0.024 ± 0.002 0.054 0.051 

14:1n5 0.066 ± 0.006 0.076 ± 0.006 0.085 ± 0.007 0.055 ± 0.006 0.157 ± 0.017 0.126 ± 0.003 0.047 0.033 0.034 

14:0 iso 0.268 ± 0.024 0.318 ± 0.021 0.319 ± 0.026 0.247 ± 0.022 0.622 ± 0.023 0.598 ± 0.020 0.175 ± 0.002 0.197 0.200 

14:0 ante 0.122 ± 0.011 0.143 ± 0.010 0.146 ± 0.009 0.108 ± 0.011 0.238 ± 0.011 0.257 ± 0.008 0.073 0.100 0.094 

15:0 0.336 ± 0.015 0.371 ± 0.013 0.384 ± 0.020  0.329 ± 0.015 0.617 ± 0.025  0.656 ± 0.020 0.383 4.761 5.040 

15:1n:8  0.007 ± 0.002 0.007 ± 0.001  0.006 ± 0.001  0.003 ± 0.001 0.011 ± 0.001 0.009 ± 0.003  0.000 0.000 0.000 

15:1n6 0.061 ± 0.006 0.037 ± 0.006 0.029 ± 0.003 0.025 ± 0.003  0.042 ± 0.004  0.070 ± 0.009 0.015 ± 0.003 0.000 0.000 

15:0 iso 0.204 ± 0.032 0.199 ± 0.028 0.210 ± 0.038 0.183 ± 0.022 0.332 ± 0.059 0.528 ± 0.036 0.122 ± 0.002 0.308 0.356 

16:0 15.900 ± 0.438 15.849 ± 0.492 16.350 ± 0.638 16.289 ± 0.483 18.468 ± 0.694 23.167 ± 0.386 17.998 ± 0.025 6.466 6.213 

16:1n11 0.220 ± 0.014  0.254 ± 0.019  0.273 ± 0.030  0.197 ± 0.010  0.364 ± 0.016  0.377 ± 0.032 0.224 ± 0.009 0.478 0.548 

16:1n9 0.511 ± 0.028 0.575 ± 0.026 0.619 ± 0.041 0.531 ± 0.043 0.939 ± 0.031 0.706 ± 0.022 0.242 ± 0.001  0.454 0.435 

16:1n7 6.230 ± 0.495 7.938 ± 0.546 8.101 ± 0.584 5.733 ± 0.542 10.617 ± 0.351 11.581 ± 0.290 4.233 ± 0.022  3.803 3.986 

16:1n5  0.256 ± 0.013  0.287 ± 0.010  0.343 ± 0.028 0.244 ± 0.011 0.764 ± 0.030  0.416 ± 0.011 0.260 ± 0.003 0.320 0.305 

16:2n6 0.262 ± 0.012  0.296 ± 0.011  0.334 ± 0.021  0.283 ± 0.012  0.492 ± 0.026 0.469 ± 0.012  0.363 ± 0.010  0.153 0.128 

16:0 iso 0.034 ± 0.003 0.036 ± 0.002  0.043 ± 0.003  0.033 ± 0.002 0.096 ± 0.007 0.031 ± 0.001  0.021 ± 0.002  0.038 0.059 

7Me 16:0 0.109 ± 0.006 0.116 ± 0.006  0.129 ± 0.006  0.098 ± 0.005  0.255 ± 0.008  0.144 ± 0.007  0.093 ± 0.001  0.230 0.238 

16:2n4 0.167 ± 0.016  0.215 ± 0.019  0.215 ± 0.015  0.167 ± 0.016  0.411 ± 0.029  0.170 ± 0.013  0.271 ± 0.011  0.208 0.247 
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17:0 0.257 ± 0.010  0.259 ± 0.008  0.271 ± 0.013 0.291 ± 0.015  0.332 ± 0.016  0.416 ± 0.012 0.364 ± 0.004 10.638 11.468 

16:3n4 0.076  ± 0.009  0.107 ± 0.010  0.094 ± 0.014  0.064 ± 0.007  0.162 ± 0.016  0.151 ± 0.016  0.227 ± 0.006  0.130 0.179 

17:1 0.259 ± 0.016  0.306 ± 0.016  0.298 ± 0.017  0.244 ± 0.018  0.501 ± 0.008  0.403 ± 0.011  0.132 ± 0.001  0.124 0.150 

16:4n3 0.029 ± 0.003  0.030 ± 0.002 0.056 ± 0.019  0.026 ± 0.001  0.062 ± 0.002 0.038 ± 0.002 0.024 ± 0.001 0.106 0.120 

17:0 iso 0.206 ± 0.009 0.218 ± 0.008 0.201 ± 0.008 0.209 ± 0.008  0.227 ± 0.008 0.321 ± 0.008 0.201 ± 0.002  0.062 0.074 

16:4n1 0.040 ± 0.011  0.033 ± 0.003 0.030 ± 0.003  0.028 ± 0.003 0.061 ± 0.003  0.057 ± 0.005  0.077 ± 0.002  0.071 0.097 

18:0 3.137 ± 0.154 2.817 ± 0.143 2.999 ± 0.174 3.450 ± 0.171 2.627 ± 0.139  3.608 ± 0.087 1.703 ± 0.031 1.012 0.977 

18:1n9 20.461 ± 1.412 21.080 ± 1.602 20.557 ± 1.408 19.389 ± 1.544 21.758 ± 0.393 30.950 ± 0.458 14.235 ± 0.011 5.565 6.064 

18:1n7 3.917 ± 0.242 4.344 ± 0.239 4.529 ± 0.312 3.739 ± 0.244 6.715 ± 0.153 5.492 ± 0.119 2.900 ± 0.005 2.981 3.082 

18:1n5 0.228 ± 0.015  0.255 ± 0.015  0.290 ± 0.028 0.215 ± 0.013  0.535 ± 0.023  0.319 ± 0.008  0.213 ± 0.001  0.112 0.119 

18:2d5, 11 0.070 ± 0.002  0.070 ± 0.002 0.087 ± 0.006 0.071 ± 0.003 0.107 ± 0.007  0.102 ± 0.004  0.048 ± 0.011 0.017 0.019 

18:2n7 0.037 ± 0.003 0.048 ± 0.003  0.049 ± 0.002  0.042 ± 0.002  0.045 ± 0.002 0.035 ± 0.002 0.034 ± 0.004 0.066 0.077 

18:2n6 2.687 ± 0.167 3.062 ± 0.177 3.129 ± 0.131  2.603 ± 0.161  3.568 ± 0.211 1.987 ± 0.127  3.242 ± 0.009 3.912 3.952 

18:2n4 0.130 ± 0.009 0.143 ± 0.010 0.146 ± 0.007 0.116 ± 0.008  0.203 ± 0.011 0.096 ± 0.008 0.134 ± 0.007 0.293 0.323 

18:3n6 0.116 ± 0.010 0.135 ± 0.010 0.136 ± 0.008 0.107 ± 0.010 0.212 ± 0.017  0.057 ± 0.009 0.185 ± 0.003 0.311 0.290 

18:3n4 0.144 ± 0.008 0.172 ± 0.009 0.161 ± 0.005 0.144 ± 0.009 0.155 ± 0.003  0.158 ± 0.006 0.133 ± 0.002 0.228 0.234 

18:3n3 1.533 ± 0.120 1.696 ± 0.126 1.769 ± 0.106 1.361 ± 0.108  1.785 ± 0.155 0.564 ± 0.082 1.418 ± 0.007 3.424 3.414 

18:3n1 0.031 ± 0.003  0.031 ± 0.003  0.039 ± 0.004 0.028 ± 0.002  0.062 ± 0.004  0.047 ± 0.004  0.028 ± 0.003  0.314 0.340 

18:4n3 0.631 ± 0.059  0.720 ± 0.055 0.770 ± 0.055 0.554 ± 0.053 0.828 ± 0.070 0.233 ± 0.035 0.615 3.456 3.273 

18:4n1 0.022 ± 0.007  0.018 ± 0.005  0.018 ± 0.005  0.017 ± 0.005 0.033 ± 0.005 0.060 ± 0.005 0.000 0.000 0.062 

20:0 0.092 ± 0.005 0.098 ± 0.005  0.116 ± 0.011  0.106 ± 0.011  0.130 ± 0.003  0.218 ± 0.006  0.138 ± 0.005  0.140 0.120 

20:1n11 0.096 ± 0.010 0.102 ± 0.007 0.095 ± 0.005 0.093 ± 0.009 0.126 ± 0.008 0.160 ± 0.001 0.043 0.000 0.000 

20:1n9 1.406 ± 0.107 1.592 ± 0.087 1.517 ± 0.093 1.347 ± 0.107 1.074 ± 0.032 2.080 ± 0.072 1.473 ± 0.013 1.055 1.098 

20:1n7 0.340 ± 0.025  0.389 ± 0.024 0.365 ± 0.019 0.331 ± 0.023 0.321 ± 0.010 0.491 ± 0.013 0.235 ± 0.008 0.278 0.316 

20:2 NMI D1 0.015 ± 0.003 0.023 ± 0.005  0.028 ± 0.010 0.016 ± 0.003 0.049 ± 0.002 0.055 ± 0.002  0.012 ± 0.012  0.000 0.000 

20:2n9 0.036 ± 0.006 0.046 ± 0.010 0.066 ± 0.032 0.037 ± 0.004 0.065 ± 0.009 0.092 ± 0.005 0.029 0.040 0.045 

C20:2 NMI D2 0.022 ± 0.003  0.030 ± 0.005  0.029 ± 0.004  0.041 ± 0.007 0.124 ± 0.065 0.109 ± 0.008 0.018 ± 0.018 0.037 0.000 

20:2n6 1.949 ± 0.252 2.113 ± 0.125 2.165 ± 0.172  1.865 ± 0.113 0.660 ± 0.036 0.629 ± 0.058 2.149 ± 0.233 1.863 1.980 
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20:3 NMI T 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.005 ± 0.002 0.000 0.000 0.057 ± 0.007 0.000 0.000 

20:3n6 0.331 ± 0.022 0.356 ± 0.026 0.328 ± 0.017 0.328 ± 0.020 0.228 ± 0.022 0.135 ± 0.023 0.169 ± 0.013 0.272 0.274 

20:4n6 3.510 ± 0.306 3.001 ± 0.294 3.034 ± 0.201 3.772 ± 0.289 2.836 ± 0.279 0.466 ± 0.094 4.621 ± 0.033 2.736 1.983 

20:3n3 0.612 ± 0.042 0.652 ± 0.046 0.650 ± 0.036 0.563 ± 0.035 0.394 ± 0.030 0.186 ± 0.032 0.819 ± 0.013 2.940 2.475 

20:4n3 1.423 ± 0.107 1.544 ± 0.125 1.422 ± 0.089 1.276 ± 0.097 0.676 ± 0.062 0.220 ± 0.053  0.883 ± 0.010 3.664 3.498 

20:5n3 5.307 ± 0.432 4.815 ± 0.482 4.781 ± 0.332 5.576 ± 0.461 5.800 ± 0.557 0.647 ± 0.150 16.492 ± 0.099 9.530 9.847 

22:0 0.058 ± 0.008 0.043 ± 0.003  0.075 ± 0.016 0.071 ± 0.013 0.050 ± 0.007 0.117 ± 0.009 0.112 ± 0.016 0.202 0.353 

22:1n11 0.039 ± 0.012 0.057 ± 0.018 0.051 ± 0.014 0.040 ± 0.013  0.013 ± 0.005 0.094 ± 0.027  0.000 0.000 0.000 

22:1n9 0.237 ± 0.016  0.277 ± 0.014  0.261 ± 0.018  0.232 ± 0.018  0.288 ± 0.014  0.384 ± 0.024  0.387 ± 0.008 0.242 0.250 

22:1n7 0.045 ± 0.005  0.063 ± 0.004  0.062 ± 0.012  0.048 ± 0.005  0.076 ± 0.004  0.117 ± 0.005  0.132 ± 0.005 0.236 0.218 

22:2 NMI D1 0.006 ± 0.003  0.002 ± 0.001 0.013 ± 0.008 0.004 ± 0.002 0.000 0.002 ± 0.001 0.000 0.000 0.000 

22:2 NMI D2 0.029 ± 0.004  0.030 ± 0.003  0.040 ± 0.003 0.017 ± 0.003  0.020 ± 0.005  0.013 ± 0.004  0.000 0.000 0.000 

22:2n6 0.139 ± 0.011 0.168 ± 0.015  0.136 ± 0.009 0.126 ± 0.010  0.073 ± 0.005 0.114 ± 0.011 0.061 ± 0.007 0.736 0.786 

21:5n3 0.131 ± 0.010  0.137 ± 0.011 0.132 ± 0.009 0.125 ± 0.009 0.080 ± 0.009 0.005 ± 0.005 0.102 ± 0.002  0.293 0.291 

22:3n3 0.550 ± 0.037 0.540 ± 0.044 0.499 ± 0.030 0.561 ± 0.035  0.126 ± 0.009 0.084 ± 0.016  0.132 ± 0.002  0.753 0.758 

22:5n6 1.594 ± 0.126 1.397 ± 0.116 1.292 ± 0.105  1.714 ± 0.129 0.620 ± 0.051  0.157 ± 0.037  1.344 ± 0.016  2.928 2.801 

22:4n3 0.340 ± 0.034 0.428 ± 0.048 0.340 ± 0.024  0.309 ± 0.032 0.105 ± 0.014  0.054 ± 0.020 0.205 ± 0.013 3.966 3.817 

22:5n3 2.938 ± 0.196 2.947 ± 0.233 2.639 ± 0.178 3.044 ± 0.185 0.518 ± 0.036 0.215 ± 0.057 0.507 ± 0.016 2.304 2.253 

22:6n3 16.296 ± 1.760 12.727 ± 1.521  12.579 ± 1.382 17.840 ± 1.975 4.671 ± 0.382 0.909 ± 0.193  16.961 ± 0.173 11.157 10.594 

24:1n9 0.433 ± 0.033 0.676 ± 0.233  0.437 ± 0.024  0.537 ± 0.033 0.673 ± 0.053 0.724 ± 0.040 0.358 ± 0.009 1.655 1.695 

 
2.10b. Stannard Rock Fatty Acids 

Fatty 
Acid 

Lean Sis Hump Bloater Kiyi DPSC PGWH Cisc Mys Zoop1 Zoop2 Moth RNSM 

12:0 0.115 ± 0.009 0.126 ± 0.010 0.159 ± 0.009 0.230 ± 0.016  0.277 ± 0.012 0.141 ± 0.014 0.079 ± 0.007 0.099 ± 0.026 0.163 ± 0.007 0.039 0.045 0.150 ± 
0.002 

0.068 ± 
0.030 

12:1  0.010 ± 0.001 0.014 ± 0.001 0.016 ± 0.001 0.024 ± 0.002 0.027 ± 0.001  0.030 ± 0.004 0.031 ± 0.005 0.027 ± 0.003 0.011 ± 0.002 0.018 ± 
0.001 

0.028 0.000 0.006 ± 
0.006 

13:1  0.062 ± 0.002  0.063 ± 0.003 0.075 ± 0.003 0.086 ± 0.008 0.083 ± 0.004 0.084 ± 0.011 0.075 ± 0.009 0.095 ± 0.013 0.042 ± 0.006 0.070 0.068 0.015 ± 
0.001 

0.036 ± 
0.011 

14:0 2.851 ± 0.138 3.150 ± 0.122 3.323 ± 0.111 5.914 ± 0.580 5.451 ± 0.276 3.559 ± 0.277  4.692 ± 0.275 6.348 ± 0.474 2.477 ± 0.331 3.026 ± 
0.445 

3.999 0.973 ± 
0.007 

2.622 ± 
0.451 

14:1n9 0.025 ± 0.002  0.028 ± 0.002  0.032 ± 0.001  0.043 ± 0.001  0.047 ± 0.002  0.047 ± 0.004  0.021 ± 0.002  0.031 ± 0.004 0.036 ± 0.008 0.066 ± 
0.008 

0.049 0.028 0.026 ± 
0.008 
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14:1n7 0.042 ± 0.001  0.047 ± 0.003 0.046 ± 0.001 0.036 ± 0.003  0.040 ± 0.004  0.072 ± 0.008 0.042 ± 0.003 0.050 ± 0.005  0.031 ± 0.007 0.043 ± 
0.002  

0.020 0.014 ± 
0.001 

0.023 ± 
0.004  

14:1n5 0.066 ± 0.004 0.083 ± 0.003 0.077 ± 0.003 0.098 ± 0.004  0.101 ± 0.005 0.118 ± 0.017 0.085 ± 0.008 0.075 ± 0.008 0.051 ± 0.013 0.029 0.043 0.034 ± 
0.002 

0.048 ± 
0.009 

14:0 iso 0.227 ± 0.024 0.306 ± 0.024 0.344 ± 0.021 0.569 ± 0.061 0.504 ± 0.019 0.638 ± 0.063 0.555 ± 0.031 0.752 ± 0.077 0.214 ± 0.013 0.237 ± 
0.030 

0.356 0.023 ± 
0.002 

0.259 ± 
0.026 

14:0 
ante 

0.123 ± 0.007 0.150 ± 0.007 0.159 ± 0.006 0.239 ± 0.028 0.216 ± 0.009 0.239 ± 0.026 0.270 ± 0.020 0.329 ± 0.033 0.101 ± 0.12 0.135 ± 
0.016 

0.199 0.055 ± 
0.002 

0.067 ± 
0.008 

15:0 0.319 ± 0.012 0.352 ± 0.015 0.385 ± 0.011 0.594 ± 0.053 0.545 ± 0.020 0.511 ± 0.024 0.649 ± 0.037 0.826 ± 0.072 0.323 ± 0.062 3.856 ± 
0.822  

1.875 0.163 ± 
0.001 

0.379 ± 
0.019 

15:1n:8  0.003 ± 0.001 0.008 ± 0.003 0.006 ± 0.001 0.006 ± 0.003 0.003 ± 0.002 0.004 ± 0.001 0.008 ± 0.002 0.013 ± 0.004 0.005 ± 0.005 0.000 0.000 0.007 ± 
0.004 

0.004 ± 
0.004 

15:1n6 0.016 ± 0.002 0.019 ± 0.005 0.016 ± 0.001 0.030 ± 0.007 0.041 ± 0.010 0.031 ± 0.003 0.053 ± 0.005 0.053 ± 0.009 0.014 ± 0.002 0.007 ± 
0.007 

0.014 0.009 ± 
0.002 

0.004 ± 
0.004 

15:0 iso 0.109 ± 0.008 0.159 ± 0.017 0.164 ± 0.007 0.315 ± 0.051 0.282 ± 0.038 0.258 ± 0.026 0.415 ± 0.046 0.552 ± 0.084 0.147 ± 0.014 0.323 ± 
0.078 

0.199 0.053 ± 
0.001 

0.138 ± 
0.005 

16:0 14.910 ± 
0.302 

14.414 ± 
0.441 

14.906 ± 
0.338 

20.156 ± 
1.345 

19.071 ± 
0.685 

17.847 ± 
0.394 

26.438 ± 
1.301 

26.966 ± 
2.553 

14.297 ± 
3.481 

9.251 ± 
1.844 

13.570 31.814 ± 
0.043 

18.994 ± 
0.208 

16:1n11 0.212 ± 0.011 0.215 ± 0.011 0.233 ± 0.010 0.335 ± 0.042 0.309 ± 0.017  0.373 ± 0.017 0.508 ± 0.042 0.552 ± 0.060 0.224 ± 0.017 0.388 ± 
0.020 

0.187 0.185 ± 
0.010 

0.366 ± 
0.011 

16:1n9 0.532 ± 0.021 0.638 ± 0.024 0.593 ± 0.024 0.436 ± 0.013  0.498 ± 0.027 0.934 ± 0.017  0.512 ± 0.025 0.620 ± 0.045  0.305 ± 0.042 0.341 ± 
0.056 

0.337 0.401 ± 
0.006 

0.385 ± 
0.038 

16:1n7 7.643 ± 0.354 9.023 ± 0.204 7.957 ± 0.310 9.805 ± 0.236 10.555 ± 
0.382 

11.248 ± 
0.885 

9.579 ± 0.497 7.845 ± 0.774 7.757 ± 1.208 3.726 ± 
0.073 

4.386 2.615 ± 
0.033 

5.638 ± 
0.704 

16:1n5  0.297 ± 0.015  0.351 ± 0.019 0.335 ± 0.014 0.412 ± 0.025 0.361 ± 0.028 0.864 ± 0.062 0.582 ± 0.059 0.538 ± 0.044 0.359 ± 0.045 0.328 ± 
0.016 

0.425 0.142 ± 
0.002 

0.371 ± 
0.021 

16:2n6 0.267 ± 0.011 0.325 ± 0.013  0.342 ± 0.009 0.396 ± 0.027 0.371 ± 0.016 0.529 ± 0.031 0.560 ± 0.037 0.740 ± 0.081 0.280 ± 0.062 0.240 ± 
0.021 

0.329 0.031 ± 
0.004 

0.386 ± 
0.029 

16:0 iso 0.039 ± 0.002 0.051 ± 0.003 0.049 ± 0.003 0.036 ± 0.003  0.040 ± 0.002 0.092 ± 0.004  0.032 ± 0.002  0.033 ± 0.003 0.039 ± 0.010 0.031 ± 
0.004 

0.022 0.043 0.030 ± 
0.003 

7Me 
16:0 

0.125 ± 0.006 0.143 ± 0.006 0.131 ± 0.006 0.209 ± 0.008 0.204 ± 0.008 0.319 ± 0.010 0.199 ± 0.012 0.322 ± 0.027 0.137 ± 0.021 0.160 ± 
0.029 

0.153 0.019 ± 
0.002 

0.294 ± 
0.022 

16:2n4 0.276 ± 0.018 0.304 ± 0.013 0.322 ± 0.016 0.380 ± 0.029 0.394 ± 0.029 0.433 ± 0.038 0.194 ± 0.031  0.199 ± 0.035 0.456 ± 0.040 0.188 ± 
0.009 

0.226 0.030 ± 
0.002 

0.398 ± 
0.054 

17:0 0.221 ± 0.008 0.232 ± 0.010 0.271 ± 0.007 0.329 ± 0.028 0.297 ± 0.014 0.353 ± 0.011 0.515 ± 0.035 0.666 ± 0.064 0.243 ± 0.065 8.406 ± 
1.979 

3.945 0.203 ± 
0.004 

0.251 ± 
0.013 

16:3n4 0.111 ± 0.009 0.119 ± 0.006 0.123 ± 0.007 0.214 ± 0.018 0.167 ± 0.013 0.150 ± 0.011 0.198 ± 0.019 0.174 ± 0.019 0.246 ± 0.026 0.104 ± 
0.003 

0.152 0.022 ± 
0.002 

0.204 ± 
0.024 

17:1 0.268 ± 0.010 0.334 ± 0.011 0.313 ± 0.011 0.300 ± 0.008 0.329 ± 0.008 0.420 ± 0.023 0.356 ± 0.013 0.264 ± 0.013 0.189 ± 0.028 0.119 ± 
0.015 

0.122 0.115 ± 
0.001 

0.203 ± 
0.016 

16:4n3 0.026 ± 0.001 0.033 ± 0.002 0.031 ± 0.001 0.032 ± 0.002 0.034 ± 0.002 0.072 ± 0.005 0.057 ± 0.005 0.049 ± 0.004 0.041 ± 0.009  0.087 ± 
0.022 

0.039 0.000 0.034 ± 
0.001 

17:0 iso 0.165 ± 0.006 0.181 ± 0.008 0.196 ± 0.005 0.249 ± 0.019 0.233 ± 0.011 0.196 ± 0.006 0.297 ± 0.022 0.423 ± 0.043 0.189 ± 0.017 0.124 ± 
0.026 

0.212 0.073 ± 
0.004 

0.162 ± 
0.007 

16:4n1 0.043 ± 0.005 0.042 ± 0.005 0.050 ± 0.004 0.107 ± 0.014 0.097 ± 0.011 0.062 ± 0.006 0.070 ± 0.013 0.194 ± 0.029 0.205 ± 0.006 0.049 ± 
0.003 

0.079 0.000 0.119 ± 
0.015 

18:0 2.826 ± 0.084 2.675 ± 0.108 2.679 ± 0.099 2.972 ± 0.237 2.726 ± 0.132 3.611 ± 0.193 4.405 ± 0.231 5.168 ± 0.381 1.191 ± 0.355 1.643 ± 
0.328 

2.336 2.695 ± 
0.044 

2.493 ± 
0.019 

18:1n9 20.729 ± 
0.799 

22.927 ± 
0.683 

20.650 ± 
0.986 

21.766 ± 
0.616 

25.360 ± 
1.049 

18.722 ± 
0.618 

19.336 ± 
0.548 

15.881 ± 
1.567 

13.333 ± 
1.202 

5.654 ± 
0.189 

5.952 24.898 ± 
12.218 

9.037 ± 
1.536 

18:1n7 3.989 ± 0.096 4.694 ± 0.130 4.307 ± 0.120 4.938 ± 0.303 4.773 ± 0.175 5.763 ± 0.149 6.676 ± 0.294 5.564 ± 0.273 3.002 ± 0.201 2.936 ± 
0.005 

3.169 0.441 ± 
0.051 

3.011 ± 
0.073 

18:1n5 0.252 ± 0.012 0.337 ± 0.018 0.320 ± 0.020 0.309 ± 0.022 0.280 ± 0.007 0.591 ± 0.040 0.436 ± 0.024 0.331 ± 0.019 0.186 ± 0.026 0.122 ± 
0.015 

0.155 0.040 ± 
0.002 

0.160 ± 
0.011 

18:2d5, 
11 

0.069 ± 0.003 0.084 ± 0.004 0.082 ± 0.005 0.075 ± 0.006 0.080 ± 0.006 0.128 ± 0.008 0.102 ± 0.008 0.097 ± 0.007  0.033 ± 0.017 0.017 ± 
0.001 

0.000 0.076 ± 
0.002  

0.047 ± 
0.005  
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18:2n7 0.045 ± 0.001 0.050 ± 0.001 0.047 ± 0.001 0.045 ± 0.002 0.050 ± 0.003 0.048 ± 0.002 0.048 ± 0.003 0.066 ± 0.007 0.044 ± 0.001 0.060 ± 
0.009 

0.066 0.031 ± 
0.003 

0.051 ± 
0.006 

18:2n6 3.193 ± 0.129 3.596 ± 0.107 3.722 ± 0.099 3.029 ± 0.199 3.188 ± 0.175 3.652 ± 0.096 2.502 ± 0.154 3.348 ± 0.259 3.371 ± 0.499 3.861 ± 
0.085 

4.682 7.641 ± 
0.062 

3.621 ± 
0.171 

18:2n4 0.162 ± 0.004 0.182 ± 0.004 0.172 ± 0.005 0.202 ± 0.009 0.189 ± 0.013 0.142 ± 0.006 0.213 ± 0.016 0.202 ± 0.017 0.164 ± 0.012 0.232 ± 
0.019 

0.244 0.075 ± 
0.005 

0.174 ± 
0.027 

18:3n6 0.165 ± 0.009 0.182 ± 0.007 0.201 ± 0.008 0.192 ± 0.021 0.184 ± 0.021 0.207 ± 0.010 0.096 ± 0.014 0.100 ± 0.017 0.310 ± 0.046 0.284 ± 
0.014 

0.255 0.193 ± 
0.002 

0.200 ± 
0.017 

18:3n4 0.192 ± 0.007 0.215 ± 0.004 0.208 ± 0.005 0.209 ± 0.006 0.210 ± 0.007 0.163 ± 0.009 0.216 ± 0.010 0.223 ± 0.009 0.144 ± 0.019 0.164 ± 
0.017 

0.216 0.000 0.159 ± 
0.028 

18:3n3 1.786 ± 0.067 1.945 ± 0.078 2.046 ± 0.073 1.798 ± 0.184 1.707 ± 0.181 1.481 ± 0.065 0.990 ± 0.119 1.288 ± 0.167 2.312 ± 0.428 3.223 ± 
0.107 

4.012 8.329 ± 
0.133 

2.223 ± 
0.143 

18:3n1 0.041 ± 0.002 0.038 ± 0.002 0.037 ± 0.001 0.061 ± 0.006 0.065 ± 0.005 0.087 ± 0.006 0.073 ± 0.007 0.133 ± 0.013 0.034 ± 0.006 0.164 ± 
0.061 

0.055 0.303 ± 
0.003 

0.112 ± 
0.011 

18:4n3 0.828 ± 0.046 0.885 ± 0.050 1.009 ± 0.057 1.182 ± 0.128 1.024 ± 0.137 0.676 ± 0.048 0.583 ± 0.081 0.599 ± 0.096 1.568 ± 0.228 3.404 ± 
0.187 

4.157 0.179 ± 
0.003 

1.417 ± 
0.043 

18:4n1 0.018 ± 0.002 0.021 ± 0.003 0.017 ± 0.002 0.048 ± 0.003 0.049 ± 0.005 0.030 ± 0.005 0.040 ± 0.003 0.036 ± 0.004 0.012 ± 0.006 0.058 ± 
0.021 

0.089 0.000 0.030 ± 
0.015 

20:0 0.134 ± 0.013 0.166 ± 0.013  0.187 ± 0.014  0.215 ± 0.012 0.182 ± 0.006 0.143 ± 0.003 0.179 ± 0.015 0.387 ± 0.030 0.135 ± 0.016 0.176 ± 
0.003 

0.246 0.448 ± 
0.004 

0.126 ± 
0.005  

20:1n11 0.096 ± 0.007 0.097 ± 0.004 0.106 ± 0.005 0.119 ± 0.007 0.137 ± 0.009 0.135 ± 0.022 0.084 ± 0.010 0.120 ± 0.030 0.071 ± 0.020 0.000 0.000 0.218 ± 
0.005 

0.048 ± 
0.027 

20:1n9 1.355 ± 0.067 1.439 ± 0.054  1.517 ± 0.47 1.485 ± 0.052 1.819 ± 0.055 0.988 ± 0.035 0.869 ± 0.023 1.453 ± 0.121 1.299 ± 0.104 0.947 ± 
0.126 

0.790 0.060 ± 
0.003 

0.578 ± 
0.117 

20:1n7 0.334 ± 0.020 0.370 ± 0.012 0.393 ± 0.011 0.499 ± 0.048 0.452 ± 0.015 0.271 ± 0.013 0.471 ± 0.029 0.761 ± 0.080 0.266 ± 0.030 0.252 ± 
0.018 

0.279 0.052 ± 
0.003  

0.230 ± 
0.026 

20:2 NMI 
D1 

0.014 ± 0.003 0.019 ± 0.004 0.017 ± 0.002 0.042 ± 0.002 0.039 ± 0.004 0.052 ± 0.003 0.039 ± 0.002 0.047 ± 0.007 0.000 0.000 0.000 0.065 ± 
0.002 

0.005 ± 
0.005 

20:2n9 0.033 ± 0.003 0.038 ± 0.006 0.035 ± 0.002 0.048 ± 0.007 0.045 ± 0.006 0.051 ± 0.003 0.080 ± 0.008 0.085 ± 0.008 0.027 ± 0.003 0.041 ± 
0.011 

0.064 0.000 0.034 ± 
0.004 

C20:2 
NMI D2 

0.032 ± 0.004 0.030 ± 0.003 0.027 ± 0.003 0.023 ± 0.008 0.036 ± 0.012 0.043 ± 0.010 0.072 ± 0.008 0.049 ± 0.005 0.000 0.021 ± 
0.021 

0.017 0.017 ± 
0.008 

0.000 

20:2n6 2.042 ± 0.121 2.138 ± 0.152 2.401 ± 0.114 1.198 ± 0.131 1.164 ± 0.082 0.631 ± 0.020 0.644 ± 0.046 0.983 ± 0.063 1.817 ± 0.114 2.090 ± 
0.298 

1.343 0.165 ± 
0.035 

1.574 ± 
0.502 

20:3 NMI 
T 

0.001 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.006 ± 0.003 0.002 ± 0.002 0.000 0.019 ± 0.005 0.060 ± 0.013 0.031 ± 0.008 0.000 0.000 0.421 ± 
0.009 

0.012 ± 
0.012 

20:3n6 0.412 ± 0.015 0.401 ± 0.020 0.429 ± 0.011  0.261 ± 0.025 0.266 ± 0.024 0.500 ± 0.084 0.191 ± 0.025 0.258 ± 0.031 0.194 ± 0.004 0.257 ± 
0.013 

0.229 0.025 ± 
0.025 

0.268 ± 
0.019 

20:4n6 3.485 ± 0.122 3.145 ± 0.122 3.497 ± 0.104 1.620 ± 0.229 1.559 ± 0.187 4.064 ± 0.383 1.250 ± 0.213 0.999 ± 0.178 4.349 ± 0.140 2.151 ± 
0.010 

2.240 0.588 ± 
0.019 

3.591 ± 
0.301 

20:3n3 0.657 ± 0.021 0.700 ± 0.034 0.744 ± 0.033 0.649 ± 0.061 0.601 ± 0.065 0.310 ± 0.015 0.477 ± 0.077 0.504 ± 0.057 0.878 ± 0.005 2.059 ± 
0.434 

1.554 0.084 ± 
0.002 

0.831 ± 
0.122 

20:4n3 1.690 ± 0.068 1.755 ± 0.089 1.816 ± 0.066 1.353 ± 0.173 1.237 ± 0.170 0.505 ± 0.032 0.915 ± 0.182 0.942 ± 0.157 1.222 ± 0.033 3.346 ± 
0.365 

2.883 0.150 ± 
0.006 

1.856 ± 
0.364 

20:5n3 5.338 ± 0.226 5.022 ± 0.245 5.592 ± 0.178 4.154 ± 0.571 3.448 ± 0.495 6.581 ± 0.525 2.783 ± 0.493 2.002 ± 0.349 16.129 ± 
0.403 

10.033 ± 
0.819 

10.540 1.747 ± 
0.042 

9.268 ± 
0.134 

22:0 0.126 ± 0.023 0.134 ± 0.018 0.156 ± 0.022 0.125 ± 0.007 0.105 ± 0.004 0.083 ± 0.010 0.099 ± 0.008 0.226 ± 0.016 0.087 ± 0.003 0.248 ± 
0.029 

0.205 0.221 ± 
0.024 

0.127 ± 
0.020 

22:1n11 0.034 ± 0.004 0.038 ± 0.006 0.036 ± 0.008 0.027 ± 0.007 0.018 ± 0.008 0.020 ± 0.013 0.003 ± 0.003 0.024 ± 0.012 0.000 0.000 0.000 0.050 ± 
0.025 

0.000 

22:1n9 0.228 ± 0.010 0.241 ± 0.011 0.257 ± 0.011 0.357 ± 0.023 0.386 ± 0.019 0.266 ± 0.015 0.251 ± 0.021 0.520 ± 0.035 0.217  ± 0.014 0.223 ± 
0.006 

0.258 0.045 ± 
0.009 

0.195 ± 
0.008 

22:1n7 0.051 ± 0.004 0.052 ± 0.004 0.060 ± 0.004 0.135 ± 0.014 0.114 ± 0.004 0.083 ± 0.005 0.145 ± 0.013 0.245 ± 0.030 0.092 ± 0.012 0.210 ± 
0.018 

0.231 0.014 ± 
0.014 

0.076 ± 
0.016 

22:2 NMI 
D1 

0.011 ± 0.003 0.014 ± 0.003 0.017 ± 0.003 0.001 ± 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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22:2 NMI 
D2 

0.030 ± 0.002 0.026 ± 0.002 0.033 ± 0.003 0.029 ± 0.006 0.027 ± 0.008 0.025 ± 0.004 0.000 0.009 ± 0.005 0.073 ± 0.041 0.000 0.000 0.000 0.000 

22:2n6 0.167 ± 0.009 0.174 ± 0.010 0.187 ± 0.008 0.245 ± 0.031 0.188 ± 0.011 0.061 ± 0.003 0.144 ± 0.014 0.370 ± 0.053 0.082 ± 0.004 0.602 ± 
0.128 

0.586 0.000 0.148 ± 
0.018 

21:5n3 0.161 ± 0.005 0.166 ± 0.007 0.170 ± 0.006 0.121 ± 0.017 0.103 ± 0.016  0.071 ± 0.006 0.087 ± 0.019 0.050 ± 0.012 0.168 ± 0.010 0.287 ± 
0.028 

0.253 0.000 0.205 ± 
0.007 

22:3n3 0.637 ± 0.024 0.667 ± 0.034 0.645 ± 0.027 0.282 ± 0.035 0.272 ± 0.031 0.178 ± 0.019 0.137 ± 0.023 0.183 ± 0.038 0.173 ± 0.003 0.613 ± 
0.116 

0.330 0.026 ± 
0.001 

0.299 ± 
0.005 

22:5n6 1.422 ± 0.090 1.262 ± 0.052 1.390 ± 0.077 0.741 ± 0.137 0.393 ± 0.145 0.772 ± 0.078 0.249 ± 0.111 0.634 ± 0.207 1.473 ± 0.020 2.982 ± 
0.075 

2.555 0.000 2.702 ± 
0.277 

22:4n3 0.434 ± 0.029 0.450 ± 0.039 0.474 ± 0.027 0.461 ± 0.045 0.385 ± 0.052 0.071 ± 0.008 0.309 ± 0.052 0.498 ± 0.105 0.255 ± 0.008 3.322 ± 
0.675 

1.660 0.026 ± 
0.002 

0.728 ± 
0.186 

22:5n3 3.043 ± 0.073 2.984 ± 0.139 3.097 ± 0.076 1.282 ± 0.182 1.129 ± 0.156 0.673 ± 0.064 1.039 ± 0.210 0.826 ± 0.179 0.616 ± 0.046 1.886 ± 
0.289 

1.184 0.114 ± 
0.002 

1.780 ± 
0.335 

22:6n3 14.104 ± 
1.183 

9.232 ± 0.745 10.055 ± 
0.954 

5.084 ± 0.637 4.225 ± 0.570 7.481 ± 0.960 5.411 ± 1.002 4.004 ± 0.659 15.714 ± 
0.478 

13.466 ± 
2.200 

14.381  0.000 20.324 ± 
1.337 

24:1n9 0.422 ± 0.015 0.380 ± 0.019 0.423 ± 0.017 0.775 ± 0.095 0.715 ± 0.055 0.996 ± 0.076 0.844 ± 0.098 1.576 ± 0.150  0.348 ± 0.024 1.576 ± 
0.007 

1.705 0.065 ± 
0.008 

0.743 ± 
0.041 

 


