113 research outputs found
A Review of the Natural History and Laboratory Culture Methods for the Yellow Dung Fly, Scathophaga stercoraria
The yellow dung fly Scathophaga stercoraria (L.) (Diptera: Scathophagidae) is a widespread and locally abundant fly associated with the dung of large mammals, especially farm animals. This species has recently become a standard test organism for evaluating toxic effects of veterinary pharmaceuticals in livestock dung. In this context, a review of its natural history and a general description of the field and laboratory rearing methods of this species are provided here to benefit the scientific community as well as government regulators and applicants of eco-toxicological studies. For guidance, means and ranges are included for all relevant standard life history traits stemming from previously published data on Swiss populations
Selection for Heterozygosity Gives Hope to a Wild Population of Inbred Wolves
Recent analyses have questioned the usefulness of heterozygosity estimates as measures of the inbreeding coefficient (f), a finding that may have dramatic consequences for the management of endangered populations. We confirm that f and heterozygosity is poorly correlated in a wild and highly inbred wolf population. Yet, our data show that for each level of f, it was the most heterozygous wolves that established themselves as breeders, a selection process that seems to have decelerated the loss of heterozygosity in the population despite a steady increase of f. The markers contributing to the positive relationship between heterozygosity and breeding success were found to be located on different chromosomes, but there was a substantial amount of linkage disequilibrium in the population, indicating that the markers are reflecting heterozygosity over relatively wide genomic regions. Following our results we recommend that management programs of endangered populations include estimates of both f and heterozygosity, as they may contribute with complementary information about population viability
Rtp1p Is a Karyopherin-Like Protein Required for RNA Polymerase II Biogenesis
The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its binding to the Rpb1p-containing subcomplex. Besides, Rtp1p has a molecular architecture characteristic of karyopherins, composed of HEAT repeats, and is able to interact with phenylalanine-glycine-containing nucleoporins. Our results define Rtp1p as a new component of the RNA pol II biogenesis machinery that plays roles in subunit assembly and likely in transport through the nuclear pore complex
The Environmental Dependence of Inbreeding Depression in a Wild Bird Population
BACKGROUND: Inbreeding depression occurs when the offspring produced as a result of matings between relatives show reduced fitness, and is generally understood as a consequence of the elevated expression of deleterious recessive alleles. How inbreeding depression varies across environments is of importance for the evolution of inbreeding avoidance behaviour, and for understanding extinction risks in small populations. However, inbreeding-by-environment (IxE) interactions have rarely been investigated in wild populations. METHODOLOGY/PRINCIPAL FINDINGS: We analysed 41 years of breeding events from a wild great tit (Parus major) population and used 11 measures of the environment to categorise environments as relatively good or poor, testing whether these measures influenced inbreeding depression. Although inbreeding always, and environmental quality often, significantly affected reproductive success, there was little evidence for statistically significant I x E interactions at the level of individual analyses. However, point estimates of the effect of the environment on inbreeding depression were sometimes considerable, and we show that variation in the magnitude of the I x E interaction across environments is consistent with the expectation that this interaction is more marked across environmental axes with a closer link to overall fitness, with the environmental dependence of inbreeding depression being elevated under such conditions. Hence, our analyses provide evidence for an environmental dependence of the inbreeding x environment interaction: effectively an I x E x E. CONCLUSIONS/SIGNIFICANCE: Overall, our analyses suggest that I x E interactions may be substantial in wild populations, when measured across relevant environmental contrasts, although their detection for single traits may require very large samples, or high rates of inbreeding
Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis
The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis
Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner
BACKGROUND: Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. CONCLUSIONS/SIGNIFICANCE: We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus
Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63
Leishmania parasites have evolved sophisticated mechanisms to subvert macrophage immune responses by altering the host cell signal transduction machinery, including inhibition of JAK/STAT signalling and other transcription factors such as AP-1, CREB and NF-κB. AP-1 regulates pro-inflammatory cytokines, chemokines and nitric oxide production. Herein we show that upon Leishmania infection, AP-1 activity within host cells is abolished and correlates with lower expression of 5 of the 7 AP-1 subunits. Of interest, c-Jun, the central component of AP-1, is cleaved by Leishmania. Furthermore, the cleavage of c-Jun is dependent on the expression and activity of the major Leishmania surface protease GP63. Immunoprecipitation of c-Jun from nuclear extracts showed that GP63 interacts, and cleaves c-Jun at the perinuclear area shortly after infection. Phagocytosis inhibition by cytochalasin D did not block c-Jun down-regulation, suggesting that internalization of the parasite might not be necessary to deliver GP63 molecules inside the host cell. This observation was corroborated by the maintenance of c-Jun cleavage upon incubation with L. mexicana culture supernatant, suggesting that secreted, soluble GP63 could use a phagocytosis-independent mechanism to enter the host cell. In support of this, disruption of macrophage lipid raft microdomains by Methyl β-Cyclodextrin (MβCD) partially inhibits the degradation of full length c-Jun. Together our results indicate a novel role of the surface protease GP63 in the Leishmania-mediated subversion of host AP-1 activity
Influenza Virus Ribonucleoprotein Complexes Gain Preferential Access to Cellular Export Machinery through Chromatin Targeting
In contrast to most RNA viruses, influenza viruses replicate their genome in the nucleus of infected cells. As a result, newly-synthesized vRNA genomes, in the form of viral ribonucleoprotein complexes (vRNPs), must be exported to the cytoplasm for productive infection. To characterize the composition of vRNP export complexes and their interplay with the nucleus of infected cells, we affinity-purified tagged vRNPs from biochemically fractionated infected nuclei. After treatment of infected cells with leptomycin B, a potent inhibitor of Crm1-mediated export, we isolated vRNP export complexes which, unexpectedly, were tethered to the host-cell chromatin with very high affinity. At late time points of infection, the cellular export receptor Crm1 also accumulated at the same regions of the chromatin as vRNPs, which led to a decrease in the export of other nuclear Crm1 substrates from the nucleus. Interestingly, chromatin targeting of vRNP export complexes brought them into association with Rcc1, the Ran guanine exchange factor responsible for generating RanGTP and driving Crm1-dependent nuclear export. Thus, influenza viruses gain preferential access to newly-generated host cell export machinery by targeting vRNP export complexes at the sites of Ran regeneration
Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency
Identification of Neural Outgrowth Genes using Genome-Wide RNAi
While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system
- …