11 research outputs found

    Is adolescent body mass index and waist circumference associated with the food environments surrounding schools and homes? A longitudinal analysis

    Get PDF
    Background: There has been considerable interest in the role of access to unhealthy food options as a determinant of weight status. There is conflict across the literature as to the existence of such an association, partly due to the dominance of cross-sectional study designs and inconsistent definitions of the food environment. The aim of our study is to use longitudinal data to examine if features of the food environment are associated to measures of adolescent weight status. Methods: Data were collected from secondary schools in Leeds (UK) and included measurements at school years 7 (ages 11/12), 9 (13/14), and 11 (15/16). Outcome variables, for weight status, were standardised body mass index and standardised waist circumference. Explanatory variables included the number of fast food outlets, supermarkets and ‘other retail outlets’ located within a 1 km radius of an individual’s home or school, and estimated travel route between these locations (with a 500 m buffer). Multi-level models were fit to analyse the association (adjusted for confounders) between the explanatory and outcome variables. We also examined changes in our outcome variables between each time period. Results: We found few associations between the food environment and measures of adolescent weight status. Where significant associations were detected, they mainly demonstrated a positive association between the number of amenities and weight status (although effect sizes were small). Examining changes in weight status between time periods produced mainly non-significant or inconsistent associations. Conclusions: Our study found little consistent evidence of an association between features of the food environment and adolescent weight status. It suggests that policy efforts focusing on the food environment may have a limited effect at tackling the high prevalence of obesity if not supported by additional strategies

    Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    Get PDF
    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes

    Improvement of endocytoscopic findings after per oral endoscopic myotomy (POEM) in esophageal achalasia; does POEM reduce the risk of developing esophageal carcinoma? Per oral endoscopic myotomy, endocytoscopy and carcinogenesis

    Get PDF
    Background: Per oral endoscopic myotomy (POEM) has been reported to be a new therapeutic option for esophageal achalasia. The possibility that POEM could reduce the risk of developing esophageal squamous cell carcinoma was evaluated.Methods: This was a single-centre, retrospective study. Fifteen consecutive patients with esophageal achalasia who underwent POEM in our institution between August 2010 and January 2012 were enrolled. Ultra-high magnification with endocytoscopy was performed, and both histopathological and immunohistochemical evaluations for Ki-67 and p53 were assessed before and 3 months after POEM.Results: POEM was successfully performed and effectively released the dysphagia symptom in all patients without severe complications. Subjective symptoms (mean Ekcardt score, before 7.4 vs. after 0.5, p<0.05) and manometric pressure studies (mean lower esophageal sphincter pressure), before 82.7 vs. after 22.9 mmHg, p<0.05) showed substantial improvement following POEM. The average numbers of esophageal epithelial nuclei before and after POEM on endocytoscopic images were 128.0 and 78.0, respectively (p<0.05). The mean Ki-67-positive ratio was 26.0 (median 25.4, range, 10.3-33.2) before and 20.7 (median 20.0, 13.1-29.9; p=0.07) after POEM, and the mean p53-positive ratio was 2.35 (median 2.61, 0.32-4.23) before and 0.97 (median 1.49, 0.32-1.56; p<0.05) after POEM. A significant positive correlation was seen between the number of nuclei and the Ki-67-positive ratio (p<0.05).Conclusions: POEM appears to be an effective and less invasive treatment of choice against achalasia and may reduce the risk of esophageal carcinogenesis. Endocytoscopy can be useful for the assessment of esophageal cellular proliferation

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo
    corecore