1,364 research outputs found

    Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: Comparison of baited videos and opera-house traps

    Get PDF
    Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment

    Characteristics of mixed Meloidogyne arenaria and M. incognita populations in flue-cured tobacco

    Get PDF
    Des expériences en champ ont été poursuivies pendant deux ans afin de caractériser l'association de #Meloidogyne arenaria race 2 (populations Pelion et Govan) et de #M. incognita race 3 sur des plants de tabac résistant à #M. incognita races 1 et 3 ainsi que sur des plants de tabac sensible aux deux espèces. A été également étudié l'effet potentiel de l'infestation par #M. arenaria sur la résistance de l'hôte à #M. incognita races 1 et 3. L'identité spécifique des #Meloidogyne a été établie à la récolte en se fondant sur la longueur des juvéniles de deuxième stade. Les plants de tabac résistants à #M. incognita ne se sont pas montrés prédisposés à l'infestation par #M. incognita lorsqu'ils étaient infestés par #M. arenaria race 2. Le développement des galles sur les racines de tabac résistant à #M. incognita est plus important dans le cas de la population Pelion que dans celui de la population Govan de #M. arenaria. Lors d'infestations mixtes par #M. incognita et #M. arenaria, et avec des traitements équivalents sur plants de tabac sensible, la proportion de la population Govan de #M. arenaria est toujours plus importante (P = 0,05) que celle de la population Pelion. (Résumé d'auteur

    Where Technology and Field Information Meet: The Metal Detector Handbook

    Get PDF
    The Metal Detector Handbook for Humanitarian Demining explains what all operators need to know about modern metal detectors. If trying to test, select or simply use a detector to its optimal ability, this handbook will show the user exactly what is needed. The handbook is in pocket A5 format and is resistant to field use

    Physics of Psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media

    Full text link
    Sensory arrays made of coupled excitable elements can improve both their input sensitivity and dynamic range due to collective non-linear wave properties. This mechanism is studied in a neural network of electrically coupled (e.g. via gap junctions) elements subject to a Poisson signal process. The network response interpolates between a Weber-Fechner logarithmic law and a Stevens power law depending on the relative refractory period of the cell. Therefore, these non-linear transformations of the input level could be performed in the sensory periphery simply due to a basic property: the transfer function of excitable media.Comment: 4 pages, 5 figure

    Clinical Pharmacokinetics, Pharmacodynamics, Safety and Efficacy of Liposomal Amphotericin B

    Get PDF
    Item does not contain fulltextSince its introduction in the 1990s, liposomal amphotericin B (LAmB) continues to be an important agent for the treatment of invasive fungal diseases caused by a wide variety of yeasts and molds. This liposomal formulation was developed to improve the tolerability of intravenous amphotericin B, while optimizing its clinical efficacy. Since then, numerous clinical studies have been conducted, collecting a comprehensive body of evidence on its efficacy, safety, and tolerability in the preclinical and clinical setting. Nevertheless, insights into the pharmacokinetics and pharmacodynamics of LAmB continue to evolve and can be utilized to develop strategies that optimize efficacy while maintaining the compound's safety. In this article, we review the clinical pharmacokinetics, pharmacodynamics, safety, and efficacy of LAmB in a wide variety of patient populations and in different indications, and provide an assessment of areas with a need for further clinical research

    ITEP Test Trials for Detection Reliability Assessment of Metal Detectors

    Get PDF
    The total detection reliability of a mine-searching system is governed by the following three elements: Intrinsic capability, which describes the basic physical-technical capability of the method. Application factors, which include those due to environment. Human factor, which is the effect of human operators on the detection reliability. Some of these can be determined in simple laboratory measurements in which the effect on detection capability of individual parameters is measured. However, the human factor and some aspects of the effects of environmental conditions on the system need to be treated statistically

    Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrodinger equation can be mapped to solutions of the Schrodinger equation for harmonic potentials, both the trapping oscillator and the inverted `oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environmentPeer reviewe

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    WMAP constraints on inflationary models with global defects

    Get PDF
    We use the cosmic microwave background angular power spectra to place upper limits on the degree to which global defects may have aided cosmic structure formation. We explore this under the inflationary paradigm, but with the addition of textures resulting from the breaking of a global O(4) symmetry during the early stages of the Universe. As a measure of their contribution, we use the fraction of the temperature power spectrum that is attributed to the defects at a multipole of 10. However, we find a parameter degeneracy enabling a fit to the first-year WMAP data to be made even with a significant defect fraction. This degeneracy involves the baryon fraction and the Hubble constant, plus the normalization and tilt of the primordial power spectrum. Hence, constraints on these cosmological parameters are weakened. Combining the WMAP data with a constraint on the physical baryon fraction from big bang nucleosynthesis calculations and high-redshift deuterium abundance, limits the extent of the degeneracy and gives an upper bound on the defect fraction of 0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio
    corecore