91 research outputs found

    The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate

    Get PDF
    Lake Ohrid is a site of global importance for palaeoclimate research. This study presents results of diatom analysis of a ca. 136 ka sequence, Co1202, from the northeast of the lake basin. It offers the opportunity to test diatom response across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrating the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial-interglacial shifts between the dominant planktonic taxa, Cyclotella fottii and C. ocellata, and exact correlation with geochemical proxies to mark the start of the Last Interglacial at ca. 130 ka. Importantly, diatoms show much stronger evidence in this site for warming during MIS3 than recorded in other productivity-related proxies, peaking at ca. 39 ka, prior to the extreme conditions of the Last Glacial maximum. In the light of the observed patterns, and from the results of analysis of early Holocene sediments from a second core, Lz1120, the lack of a response to Late Glacial and early Holocene warming from ca. 15-7.4 ka suggests the Co1202 sequence may be compromised during this phase. After ca. 7.4 ka, there is evidence for enhanced nutrient enrichment compared to the Last Interglacial, following by a post-Medieval cooling trend. Taxonomically, morphological variability in C. fottii shows no clear trends linked to climate, but an intriguing change in central area morphology occurs after ca. 48.7 ka, coincident with a tephra layer. In contrast, C. ocellata shows morphological variation in the number of ocelli between interglacials, suggesting climatically-forced variation or evolutionary selection pressure. The application of a simple dissolution index does not track preservation quality very effectively, underlining the importance of diatom concentration data in future studies

    Use of algae for monitoring of heavy metals in the River Vardar, Macedonia

    Get PDF
    Aiming to resolve some of the problems regarding monitoring of heavy metals in rivers using Cladophora glomerata and epilithic algal communities, a year’s survey of Co, Cd, Cu, Fe, Mn, Pb and Zn has been conducted on the river Vardar, FY Republic of Macedonia. Obtained results and statistical analysis clearly point out the well documented possibility of using epilithon (basically diatom communities) as a monitoring tool, since correlation patterns for epilithon are either better or the same as those for Cladophora, while at the same time epilithon is much more reliable for monitoring, especially in cases when no other plant material can be obtained

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    © Author(s) 2016. Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperaturerelated lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300-11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800-10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600-8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600-10 200 cal yr BP and between ca. 9500-8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200-9500 cal yr BP. During the middle Holocene (ca. 8200-2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP-present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800–10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600–8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the middle Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP–present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep, and oligotrophic Lake Ohrid (Macedonia/Albania)

    Get PDF
    Lake Ohrid (Macedonia/Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the first high-resolution diatom analysis during the Lateglacial and Holocene in Lake Ohrid. It demonstrates a complex diatom response to temperature change, with a direct response to temperature-induced productivity and an indirect response to temperature-related stratification/mixing regime and epilimnetic nutrient availability. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low temperature-dependent lake productivity. During the earliest Holocene (ca. 11 800–10 600 cal yr BP), although the slight increase in small, epilimnetic C. minuscula suggests climate warming and enhanced thermal stratification, diatom concentration remains very low as during the Lateglacial, indicating that temperature increase was muted. The early Holocene (ca. 10 600–8200 cal yr BP) marked a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high temperature-induced lake productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP, and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the mid Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for high temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from mesotrophic Stephanodiscus transylvanicus indicative of high temperature-induced productivity in the hypolimnion. During the late Holocene (ca. 2600–0 cal yr BP), high abundance and fluctuating composition of epilimnetic taxa is largely a response to enhanced anthropogenic nutrient input. In this deep, oligotrophic lake, this study demonstrates the strong influence of lake physical and chemical processes in mediating the complex response of diatoms to climate change with particular respect to temperature

    Shapes of leading tunnelling trajectories for single-electron molecular ionization

    Full text link
    Based on the geometrical approach to tunnelling by P.D. Hislop and I.M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single-active-electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and "almost" linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the obtained results are discussed.Comment: 14 pages, 5 figure

    The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid

    Get PDF
    The Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project is an international research initiative to study the influence of major geological and environmental events on the biological evolution of lake taxa. SCOPSCO drilling campaigns were carried out in 2011 and 2013. In 2011 we used gravity and piston coring at one of the five proposed drill sites, and in 2013 we undertook deep drilling with the Deep Lake Drilling System (DLDS) of Drilling, Observation and Sampling of the Earth's Continental Crust (DOSECC). In April and May 2013, a total of 2100 m sediments were recovered from four drill sites with water depths ranging from 125 to 260 m. The maximum drill depth was 569 m below the lake floor in the centre of the lake. By retrieving overlapping sediment sequences, 95% of the sediment succession was recovered. Initial data from borehole logging, core logging and geochemical measurements indicate that the sediment succession covers >1.2 million years (Ma) in a quasi-continuous sequence. These early findings suggest that the record from Lake Ohrid will substantially improve the knowledge of long-term environmental change and short-term geological events in the northeastern Mediterranean region, which forms the basis for improving understanding of the influence of major geological and environmental events on the biological evolution of endemic species
    • …
    corecore