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Abstract. The Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project is
an international research initiative to study the influence of major geological and environmental events on the
biological evolution of lake taxa. SCOPSCO drilling campaigns were carried out in 2011 and 2013. In 2011
we used gravity and piston coring at one of the five proposed drill sites, and in 2013 we undertook deep drilling
with the Deep Lake Drilling System (DLDS) of Drilling, Observation and Sampling of the Earth’s Continental
Crust (DOSECC). In April and May 2013, a total of 2100 m sediments were recovered from four drill sites
with water depths ranging from 125 to 260 m. The maximum drill depth was 569 m below the lake floor in
the centre of the lake. By retrieving overlapping sediment sequences, 95 % of the sediment succession was
recovered. Initial data from borehole logging, core logging and geochemical measurements indicate that the
sediment succession covers>1.2 million years (Ma) in a quasi-continuous sequence. These early findings
suggest that the record from Lake Ohrid will substantially improve the knowledge of long-term environmental
change and short-term geological events in the northeastern Mediterranean region, which forms the basis for
improving understanding of the influence of major geological and environmental events on the biological
evolution of endemic species.

Published by Copernicus Publications on behalf of the IODP and the ICDP.
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20 B. Wagner et al.: The SCOPSCO drilling project

1 Introduction and goals

The Scientific Collaboration on Past Speciation Conditions
in Lake Ohrid (SCOPSCO) project is an international re-
search initiative to study the influence of major geologi-
cal and environmental events on the biological evolution of
aquatic taxa. The target site is Lake Ohrid, considered the
oldest lake in continuous existence in Europe, and which
contains more than 200 endemic species. The recovery of
long sediment sequences from Lake Ohrid enables us to ob-
tain information about the age and origin of the lake, and
helps to improve our understanding of the regional climatic
and environmental evolution including the history of Italian
volcanic eruptions.

Lake Ohrid is∼30 km long, 15 km wide, covers an area of
358 km2, and is located at an altitude of 693 m above sea level
(a.s.l.) between Albania and Macedonia on the Balkan Penin-
sula (Fig. 1). The lake has a maximum water depth of 289 m
and a volume of 55.4 km3. The total inflow of water can be
estimated to 37.9 m3 s−1, with ca. 25 % originating from di-
rect precipitation and 25 % from riverine inflow. About 50 %
of the total inflow derives from karst aquifers, of which ca.
8 m3 s−1 are believed to come from Lake Prespa (Wagner
et al., 2010, and references therein). Including Lake Prespa,
the total catchment covers an area of 2393 km2. Evaporation
(40 %) and the main outflow, the river Crni Drim (60 %), bal-
ance the water budget of Lake Ohrid. Due to its large water
volume and low nutrient availability, Lake Ohrid is highly
oligotrophic today (e.g. Wagner et al., 2010). The surface wa-
ter has a specific conductivity of∼200µS cm−1 and a pH of
∼8.4 (Matter et al., 2010).

Lake Ohrid is renowned for having an outstanding degree
of biodiversity for several groups of organisms, including
212 described endemic species. Endemic species are found
in several groups, including bacteria, macrophytes, diatoms,
and almost all animal groups such as crustacea, molluscs
and fish (Albrecht and Wilke, 2008). There are very few
lakes worldwide that contain species with this degree of en-
demism; examples include lakes Baikal, Tanganyika, Victo-
ria and Malawi. However, all these lakes have a much larger
surface area, meaning that Lake Ohrid is the most diverse
lake in the world when the number of endemic species is
related to surface area (Albrecht and Wilke, 2008). This in-
triguing characteristic contributed significantly to the estab-
lishment of Lake Ohrid as UNESCO World Heritage Site in
1979.

Lake Ohrid is considered to be the oldest lake in Europe
and is one of the very few ancient lakes on earth that has
likely existed continuously for more than 1 Ma. Geological
studies suggest that the lake basin formed during the final
phases of Alpine orogeny in an approximately N–S trend-
ing graben structure between ca. 10 and 2 Ma (cf. Lindhorst
et al., 2014). Molecular clock analyses of several endemic
species flocks (i.e. groups of closely related species) indicate

Figure 1. Topographic and bathymetric map of Lake Ohrid on the
Balkan Peninsula. ICDP coring sites are indicated by white dots.
The red lines indicate the locations of seismic profiles shown in
Figs. 2, 3 and 4.

that Lake Ohrid is probably 1.5 to 3 Ma old (Trajanovski et
al., 2010).

Previous sedimentary records from Lake Ohrid are up
to ca. 15 m long and span the last glacial/interglacial cycle
with some minor hiatuses. These records indicate that Lake
Ohrid sediments contain information on long- and short-
term climate change in this region (e.g. Vogel et al., 2010a;
Wagner and Wilke, 2011). Other terrestrial records span-
ning more than 1 Ma are rare from the northern Mediter-
ranean region. The most prominent study is likely the pollen
record from Tenaghi Philippon, which covers the last ca.
1.35 Ma (Tzedakis et al., 2006). Continuous marine records
of equivalent age are also rare and often analysed at too low
temporal resolution (e.g. Kroon et al., 1998) to reliably re-
construct short-term events. In addition to generating proxy
data on long- and short-term environmental change, our pre-
liminary studies also revealed that Lake Ohrid is a distal
archive of the activity of Italian volcanoes. Its sediments
comprise ca. 10 tephra and cryptotephra (i.e. non-visible
tephra) layers in the last ca. 140 ka. These volcanic event
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Table 1. SCOPSCO drill sites.

Site Water # of holes Total drill Total Deepest drill Length of composite Remarks
depth (m) (planned) metres (m) recovery (m) depth (m b.l.f.) record * (m)

DEEP 243 6 (2) 2088.71 1526.06 568.92 544.88 (95.77 %) spot coring
Cerava 119/131 2 (2) 175.71 172.20 90.48 87.86 (97.10 %) site on a slope
Gradište 131 3 (2) 327.35 224.46 123.41 114.07 (92.43 %)
Peštani 262 1 (0) 194.50 177.90 194.50 177.90 (91.45 %)
Lini 260 1 (2) 10.08 10.08 10.08 10.08 (100.00 %) drilled in 2011
Struga 0 0 (2) 0 0 0 0 skipped

∗ Composite field recovery is estimated based on field depths and magnetic susceptibility measurements.

layers provide information on ash dispersal from the promi-
nent volcanic regions in Italy and contribute significantly to
the construction of a robust chronology by comparison with
other dated records in the region using tephrochronological
cross-correlation of geochemical fingerprints (Sulpizio et al.,
2010; Caron et al., 2010; Vogel et al., 2010b; Damaschke
et al., 2013). In addition, analysis of Lake Ohrid sediments
will generate information on tectonic events. The lake is lo-
cated in a highly active seismic zone with frequent earth-
quakes (e.g. Muço et al., 2002; NEIC database, USGS), and
the lacustrine sediments on the subaquatic slopes are sub-
ject to mass wasting and seismite formation (Wagner et al.,
2008; Reicherter et al., 2011; Lindhorst et al., 2012). Stud-
ies from other lakes and marine basins have shown that these
mass-wasting deposits can be used to reconstruct the long-
term earthquake history of a region (e.g. Schnellmann et al.,
2002; Beck et al., 2012).

Despite uncertainties in age estimation, its likely contin-
uous existence over more than 1 Ma makes Lake Ohrid an
extant hotspot of evolution and an evolutionary reservoir en-
abling relict species to survive (Albrecht and Wilke, 2008).
These outstanding characteristics allowed Lake Ohrid to be-
come one of the target sites within the scope of the Interna-
tional Continental Scientific Drilling Program (ICDP). The
deep drilling of Lake Ohrid has four major aims: (i) to ob-
tain precise information about the age and origin of the lake,
(ii) to unravel the regional seismotectonic history including
effects of major earthquakes and associated mass-wasting
events, (iii) to obtain a continuous record containing infor-
mation on Quaternary volcanic activity and climate change in
the central northern Mediterranean region, and (iv) to evalu-
ate the influence of major geological events on evolution and
the generation of the observed extraordinary degree of en-
demic biodiversity.

2 Site selection

The site selection for the deep drilling project was based on
hydro-acoustic surveys carried out between 2004 and 2008.
Multichannel seismic data were collected using a Mini GI
Air Gun (0.25 L in 2007 and 0.1 L in 2008) and a 16-channel

100 m long streamer, complemented by parametric sediment
echosounder profiles (SES-96 light in 2004 and SES 2000
compact in 2007 and 2008, Innomar Co.). The theoretical
vertical resolution of both types of seismic data can be esti-
mated to be 2 m for the Mini GI gun and 0.2 m for the Inno-
mar data.

Based on a dense grid of multichannel seismic data
(∼500 km total length) and sediment echosounder profiles
(>900 km total length), five drill sites were originally pro-
posed (Fig. 1; Table 1). They range from 80 to 260 m water
depth and had target drilling depths between 20 and 680 m.

The “DEEP” site is located in the central basin of Lake
Ohrid in∼250 m water depth. This master site is well suited
to address most of our key research questions (Table 1). The
seismic data from the central basin show a rough basement
topography with numerous highs and lows (Figs. 2 and 3).
The basement lows are characterized by onlap fills and there-
fore suggested possible recovery of the longest records. The
DEEP site is located in a basement depression with an esti-
mated maximum sediment fill of 680 m (Fig. 3). Seismic data
show undisturbed sediments without unconformities or ero-
sional features, thus suggesting that a continuous sediment
record of maximum age and free of major hiatuses could be
recovered. Strong multiples, however, mask the lower part of
the sedimentary succession.

The “Struga” site is located close to the northern shore of
Lake Ohrid (Fig. 1). It is the shallowest (80 m water depth)
of all the sites. The objectives of this site are to investigate
changes in the hydrological regime, to obtain information on
lake level fluctuations, and potentially to obtain macrofossils
for a cross-validation with the results obtained from molec-
ular clock analyses. The intention to drill at the Struga site
in the northern part of the lake was abandoned for logisti-
cal reasons during the drilling campaign. Instead, a new site
was selected in the eastern part of the lake. This “Peštani”
site (Fig. 1) had a water depth of 260 m and was chosen with
the aim of reaching sediments deposited directly above the
bedrock at ca. 200 m below lake floor (b.l.f.; Fig. 4).

The “Cerava” site (Figs. 1 and 4) is located on a lake ter-
race in 125 m water depth close to the southern shore of Lake
Ohrid, 2–3 km off the southern feeder spring area and Cerava
River, which are the main tributaries to Lake Ohrid. Several
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Figure 2. Seismic profile crossing Lake Ohrid in N–S direction. The central basin shows thick undisturbed sediments, which were drilled at
the DEEP site. The DEEP site is about 1 km to the west of the seismic line. Other prominent features include faults, slides, clinoforms and
bright spots. See Fig. 1 for location.

clinoforms in the seismic data reflect the development of ter-
races, which are linked to lake-level fluctuations. The main
objective of this site is to reconstruct these variations. In ad-
dition, data from this core will be used to support our inter-
pretation of tectonic activities and related mass-movement
events.

The “Gradište” site (Figs. 1 and 4) is located in 130 m wa-
ter depth close to the eastern margin of the lake in the hang-
ing wall of a major active lake-bounding normal fault. The
bathymetry reveals a steep west-dipping major fault associ-
ated with a small graben on the lake floor, which suggests
recent activity of this fault. The Gradište site is also char-
acterized by high inflow from sublacustrine karstic springs
and constitutes the most important hotspot of endemic biodi-
versity in the lake. Macrofossils from this site are expected
to best reflect the evolutionary history of invertebrates and
plants and should allow us to test the role of sublacustrine
springs in generating and maintaining biodiversity.

The “Lini” site (Figs. 1 and 4) is off the Lini Peninsula in
260 m water depth close to the western shore of Lake Ohrid.
This locality was selected to study fault activity on the west-

ern basin bounding faults. Seismic profiles across the west-
ern coast show that the steepest gradient in front of the Lini
Peninsula is due to active scarps of eastwards-dipping nor-
mal faults. The tectonic setting is comparable to the Gradište
site with a set of active antithetic faults.

3 Coring results and borehole logging

Coring was originally planned for summer 2011 using
Drilling, Observation and Sampling of the Earth’s Continen-
tal Crust’s (DOSECC) Deep Lake Drilling System (DLDS).
Although this was postponed, a coring campaign using
UWITEC (Austria) equipment was carried out in June 2011
in order to recover a 20 m long sediment sequence proposed
for the Lini site and also surface sediment cores from the
DEEP site. A gravity corer was used to obtain the undis-
turbed surface sediments, and deeper sediments were recov-
ered with a piston corer. A re-entry cone, which was posi-
tioned on the lake bed, and extension rods of 2 m length con-
trolled the exact release of the piston to ensure retrieval of a
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Figure 3. Seismic profile crossing the DEEP site in W–E direc-
tion (only Macedonian part of Lake Ohrid due to missing Albanian
permissions during the 2007 survey). See Fig. 1 for location. The
green line in the seismic profile indicates the approximate maxi-
mum depth of cores recovered from DEEP site, whilst the black
line indicates the originally proposed target depth.

continuous core sequence. Core recovery at the Lini site was
around 100 % including core catcher samples. Core loss or
disturbance of sediment between the individual 2 m segments
is therefore regarded as low (<6 cm). However, bad weather
and high waves on Lake Ohrid stopped the coring campaign
at ca. 10 m depth in 2011. At the DEEP site, a 1.6 m long
surface sediment sequence was retrieved.

A fire on the container vessel MVMSC Flaminia, which
transported the DLDS from the US to Europe in summer
2012, caused a second delay for the start of the drilling opera-
tions. Finally, drilling started in late March 2013, and by late
May 2013 a total of∼2100 m of sediment had been recov-
ered from Lake Ohrid at four different sites. The SCOPSCO
drilling operation is heralded as one of the most successful
ICDP lake drilling campaigns ever.

At the DEEP site, six parallel holes were drilled with a
maximum sediment depth of 569 m b.l.f. (Fig. 3). Pelagic
sediments characterize the uppermost 430 m of the sediment
column (Fig. 5). Below 430 m b.l.f., shallow water facies
became increasingly dominant, including fine-grained ma-
terial with high organic matter content, coarser sediments
with shell remains, and distinct sand layers. Gravel and peb-
bles hampered penetration deeper than 569 m b.l.f. In total,
1526 m of sediment cores were recovered from the six paral-
lel holes at the “DEEP” site. Taking into account sediment–
core overlap, the total composite field recovery amounts to

95 % (545 m), being higher (99 %) for the uppermost 430 m
(Fig. 5). At the Cerava site, two parallel cores were drilled
with a maximum sediment depth of 90.5 m b.l.f. (Fig. 6).
The composite field recovery was ca. 97 % (88 m). The basal
sediments recovered consist of lithified sediments and shell
fragments or whole shells. At the Gradište site, three par-
allel cores were drilled with a maximum sediment depth
of 123 m b.l.f. (Fig. 6). The composite core recovery was
92 % (114 m). Coarse-grained sediments dominate below
82 m b.l.f. At the Peštani site only one hole with a maximum
sediment depth of 194.5 m b.l.f. was recovered (Fig. 6). The
core recovery was 91 % (178 m).

At all four drill sites, generation of high-quality continu-
ous downhole logging data comprising spectral gamma ray,
magnetic susceptibility (MS), resistivity, dipmeter, borehole
televiewer and sonic data was achieved. Additional zero-
offset vertical seismic profiling was conducted at the DEEP
site. Spectral gamma ray was run through the drill pipe, and
thereafter pipes were pulled gradually to maintain the bore-
hole stability. All the other tools were run in about 40 m long
open hole sections.

4 Preliminary scientific results

4.1 Downhole logging

Downhole logging data at the DEEP site reveal contrasting
physical properties in spectral gamma ray (gamma ray,K, U,
Th), MS, resistivity and seismic velocity (vp) data. The sed-
iment sequence below 430 m b.l.f. is characterized by higher
gamma ray values (mean: 70 gAPI) than pelagic sediments
above, showing a cyclic alternation of low (20 gAPI) and
high (65 gAPI) gamma ray values (Fig. 5).

4.2 Sedimentological work

In addition to borehole logging, some data have already been
generated from the sediment sequences recovered. The age
model and sediment stratigraphy of the 10 m long sediment
sequence recovered from the Lini site in summer 2011 spans
the Late Pleistocene to Holocene and contains two mass-
wasting deposits (Wagner et al., 2012). The more significant
uppermost mass-wasting deposit is almost 2 m thick and di-
rectly overlies the AD 472/512 tephra. The exact age of this
mass-wasting deposit cannot be defined because the tephras
from AD 472 and AD 512 indicate geochemical overlapping,
and the sediments of Lake Ohrid are not annually laminated.
However, the lack of any apparent erosional discordance at
the base of the mass-wasting deposit and the small distance
to the AD 472/512 tephra imply that the mass-wasting de-
posit occurred in the early 6th century AD (Wagner et al.,
2012). A likely trigger for this mass-wasting event could
be a historical earthquake that destroyed the city of Lych-
nidus (Ohrid). According to historical documents, this earth-
quake could have occurred at AD 518, AD 526, or AD 527.

www.sci-dril.net/17/19/2014/ Sci. Dril., 17, 19–29, 2014
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Figure 4. Seismic cross sections at drill sites(A) Cerava,(B) Gradište,(C) Peštani, and(D) Lini. The green line in the individual seismic
profiles indicates the approximate maximum depth of cores recovered, whilst the black line indicates the target depth.

Although the sediment sequence from the Lini site is shorter
than proposed, the results indicate that one of the main scien-
tific goals of the project – to reconstruct active tectonics and
mass wasting (Table 1) – can be achieved.

MS was measured on all cores recovered in summer 2013
using a multi-sensor core logger (MSCL; Geotek, UK) in
a field laboratory. Logging started immediately after the
transportation of the cores from the drilling platform to
the laboratory in order to ensure best possible overlap be-
tween individual holes. The volume-specific MS was mea-
sured over 10 s for every 2 cm of each core section with
a whole core loop sensor (internal diameter: 10 cm). The
data show a pronounced cyclic pattern most likely related
to glacial/interglacial cycles and demonstrate the excellent
potential of Lake Ohrid for palaeoenvironmental reconstruc-
tions (Fig. 5). We also identified a similar cyclic pattern in the

seismic data and interpreted them as a climatic signal (Lind-
horst et al., 2014). A preliminarily correlation between seis-
mic and MS data using a simple time–depth chart constructed
out of availablep wave velocity data for the DEEP site al-
lows an optical correlation between the cyclicity of seismic
and MS data (Fig. 5), demonstrating the great potential to
integrate physical properties, sedimentological and seismic
data. Distinct peaks of MS are most likely correlated with
the occurrence of tephras or cryptotephras in the sedimen-
tary succession.

Small aliquots of core catcher material from the DEEP site
were freeze-dried and homogenized. This material was used
for measurements of total carbon (TC) and total inorganic
carbon (TIC) using a DIMATOC 200 (DIMATEC Co.). To-
tal organic carbon (TOC) was calculated as the difference be-
tween TC and TIC. Studies of the sediment cores recovered
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Figure 5. Core recovery and lithology from DEEP site. Colours indicate the different coring tools used for the four parallel holes 1B, 1C,
1D, and 1F with deeper penetration. A hydraulic piston corer (HPC, blue) was used for the recovery of the upper sediment sequences. The
relatively soft consistency of these sediments allows penetration of a 3 m long piston corer by hydraulic pressure. Rotation drill tools were
used for the deeper and more consolidated sediments and comprise the extended nose (XTN, green), where the drill bits stand back by about
12 cm from the core barrel front, and the Alien (ALN, red), where the drill bits are placed directly at the core barrel front. 1A and 1E are
not displayed as coring was restricted to surface sediments (<5 m) using the HPC. The core composite (cc) is based on core correlation of
individual holes based on field depth measurements. White parts indicate no core recovery due to gaps. The lithology (lith.), total organic
carbon (TOC), total inorganic carbon (TIC), and stable isotope (δ18Ocalc., red dots in the TIC curve, andδ13Ccalc. to the right) measurements
are based on core catcher samples. Magnetic susceptibility (MS) was measured in 2 cm intervals on a multi-sensor core logger (MSCL)
equipped with a whole core loop sensor. Spectral gamma ray (GR) is based on downhole logging data run through the drill pipe with 10 cm
vertical resolution. The grey bar indicates tentatively the Middle Pleistocene transition (MPT). Marine isotope stages (MIS) 11 and 31 are
extrapolated from glacial/interglacial changes in TIC contents.

during pre-site surveys between 2005 and 2009 have already
shown that TIC is a valuable proxy for short-term and long-
term climate change over the last ca. 135 ka (Vogel et al.,
2010a; Wagner et al., 2010). TIC is high during interglacials
and primarily originates from calcite precipitation. During
glacial phases carbonate is almost absent. In the core catcher
samples from the DEEP site, very low TIC characterizes the
coarser sediments below 430 m b.l.f. (Fig. 5). This indicates
that fluvial conditions prevailed at the onset of the existence
of Lake Ohrid and that the clastic detrital matter supplied

does not originate from the calcareous Galiçica mountain
range to the east of the lake (Fig. 1), where the main inlets
are located today. At 430 m b.l.f. TIC significantly increases
upcore to slightly more than 10 %. This implies that the lake
had established and relatively warm conditions in combina-
tion with higher productivity that caused intense calcite pre-
cipitation. Between 430 and 315 m b.l.f. TIC, data show dis-
tinct high-frequency fluctuations. This can probably be at-
tributed to the dominant 41 ka obliquity cycle prior to 920 ka
(Mudelsee and Schulz, 1997; Tzedakis et al., 2006), and the
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Figure 6. Core recovery and lithology from Cerava (2A and 2B),
Gradište (3A, 3C, and 3D), and Peštani (4A) sites. Colours indicate
different coring tools used (cf. Fig. 5). White sections in the core
composites (cc) of each site indicate no core recovery.

highest TIC peak at ca. 360 m b.l.f. is tentatively correlated
with the Marine Isotope Stage (MIS) 31 (Fig. 5). The se-
quence between 315 and 250 m b.l.f. exhibits a decrease in
TIC frequency, which probably corresponds to the Middle
Pleistocene transition (MPT) between 920 and 640 ka. The
uppermost 250 m indicate similar amplitudes in TIC fluctu-
ations, ranging between almost 0 % and 10 %, but fluctuat-
ing at a lower frequency. This variability can be attributed to
100 ka cycles, which have dominated since 640 ka. As inter-
glacial periods should correspond with high TIC, the MIS 11
and MIS 5 sediments in the DEEP site record would occur at
ca. 175 and 50 m b.l.f., respectively (Fig. 5). This is supported
by the occurrence of several tephras, which are identical to
those identified previously during analysis of cores from pre-
site surveys (Sulpizio et al., 2010; Vogel et al., 2010b). For
example, a coarser horizon at 18 m b.l.f., which is character-
ized by a maximum in MS and gamma ray data (Fig. 5), cor-
responds with the Y-5 tephra (Campanian Ignimbrite). This
is the most prominent tephra in all other records from Lake
Ohrid and was deposited 39.3 ka (e.g. Sulpizio et al., 2010).
Numerous peaks in the MS data suggest that the DEEP site
will become an outstanding distal record of the activity of
Italian eruptive volcanoes and perhaps the “Rosetta Stone”

for regional tephrostratigraphy. The low organic matter con-
tent in all core catcher samples from the DEEP site sequence,
such as reflected by TOC values of<3 % (Fig. 5), suggests
that the lake has had an oligotrophic state throughout its en-
tire existence.

4.3 Diatom data

Preliminary diatom data were generated from core catcher
samples at ca. 3 m resolution from two boreholes (1B and
1C) at the DEEP site. Results for 1C are presented here
(Fig. 7). A total of 173 smear slides was prepared, and ca.
100 diatom valves per slide were counted under oil immer-
sion at×1500 magnification with a Nikon Eclipse 80i light
microscope (LM) equipped with a Nikon Coolpix P6000 dig-
ital camera. Counts were converted into percentages and dis-
played using Tilia and TGView v. 2.0.2. (Grimm, 2004).
Diatom identification was aided by reference to the taxo-
nomic keys of Krammer and Lange-Bertalot (1986–1991)
and dedicated Ohrid and Prespa taxonomic works (Hustedt,
1945; Jurilj, 1954; Levkov et al., 2007, 2012; Cvetkoska et
al., 2012). Diatoms were preserved throughout the upper-
most 480 m of the sediment sequence, comprising 122 di-
atom taxa. Although the benthic group is the most species-
rich (60 % of taxa), the sequence above 430 m b.l.f. is domi-
nated by planktonic species (>85 %). At the base of the se-
quence, the initially poor preservation in a coarse substrate
(480–430 m b.l.f.) strengthens the interpretation of a shal-
low water body; the gradual increase in relative abundance
of planktonic taxa from 430 to 320 m b.l.f. probably reflects
the initial infilling of the lake basin, with a stable and deep
water body thereafter. Major shifts at 430 m, 320 m, 230 m
and 80 m b.l.f. are likely to represent key stages of evolution
and/or environmental change, the first of which corresponds
to the key boundary identified between shallow and deeper
lake states. There is clear evidence for evolution within the
dominant planktonic genus,Cyclotella. The replacement of
C. iris by C. fottii/hustedtii, the similar morphological char-
acteristics of which indicate that they are likely to have simi-
lar ecological niches, probably represents an excellent exam-
ple of rapid species turnover. Apparently close correlation
with geochemical proxies, and carbonate in particular, sug-
gests that major shifts in diatom-species assemblage compo-
sition are driven by glacial/interglacial climate cycles in the
latter part of the record. Our previous diatom-based palaeo-
climate analysis of sequences spanning the last 134 ka, from
the last interglacial to present (Wagner et al., 2009; Reed et
al., 2010; Cvetkoska et al., 2012), demonstrates the high sen-
sitivity of diatoms to glacial/interglacial and interstadial cli-
mate change, driven primarily by temperature-induced pro-
ductivity shifts. This is supported by modern ecological data,
which define the epilimnetic vs. hypolimnetic life habit of
dominant planktonic taxa (Allen and Ocevski, 1976). The
same suite of dominant taxa prevails in the DEEP sequence
above 230 m b.l.f., giving good modern analogues for future
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Figure 7. Preliminary diatom data from smear slides of core catcher samples (hole 1C, DEEP site).

palaeoenvironmental reconstruction. Analogues are poor be-
low this depth, underlining the degree to which Quaternary
diatom evolution has probably occurred, but the presence of
dominant taxa such asCyclotella iris in oligotrophic fossil
assemblages (Krammer and Lange-Bertalot, 1991a) provides
a strong baseline from which to reconstruct earlier Quater-
nary palaeoclimates in the lower record.

4.4 Stable isotope data

Stable isotope analysis of carbonate was conducted using
sediment aliquots from 69 samples with>1 % TIC (hole
1B, core catchers). Subsamples were processed to remove
organics and measured for stable isotope ratios. The data
showδ18Ocalcite values increasing through the core, ranging
between−7.6 ‰ and−2.9 ‰, and averaging−5.2 ‰±1.1 ‰
(Fig. 5), which is most likely the result of greater freshwa-
ter input and lower lake-water residence times in earlier in-
terglacials. From modern calibration data sets,δ18Ocalcite in
Lake Ohrid is known to be a function of inflow and evap-
oration (Leng et al., 2010), so significant positive excur-
sions suggest periods of exceptional aridity and potentially
lower lake levels (for example at 50, 210 and 310 m b.l.f.),
which coincide with high TIC phases (interglacial periods).
δ13Ccalcite ranges (−2.1 ‰ to+2.1 ‰, mean=0.0 ‰±0.8 ‰)
are consistent with the catchment geology providing a major
source of inorganic carbon (δ13Ccatchment= +1 ‰) enhanced
by longer residence times allowing increased exchange with
atmospheric CO2 towards the top of the sequence.

Figure 8. Rounded gravel and pebbles in core catcher material
(DEEP site, hole 1D at 569 m b.l.f.) indicate fluvial transportation.

Overall, the patterns seen in borehole logging, MS and
core-catcher data imply that the record from the DEEP site
covers the entire history of extant Lake Ohrid. Rounded peb-
bles and gravel from the base of the sediment record (Fig. 8)
imply that fluvial sedimentation prevailed in the Lake Ohrid
basin before the basin was filled, culminating in the develop-
ment of the deep modern lake. A stepwise decrease in grain
size from the base to 430 m b.l.f. is attributed to the estab-
lishment of lacustrine conditions and increasing lake levels.
According to TIC, MS, and borehole gamma ray values, the

www.sci-dril.net/17/19/2014/ Sci. Dril., 17, 19–29, 2014



28 B. Wagner et al.: The SCOPSCO drilling project

uppermost 430 m b.l.f. cover probably>1.2 Ma. Major hia-
tuses or mass-wasting deposits were not observed at this site.

5 Ongoing and future work

The sediment cores recovered during the SCOPSCO 2013
field campaign at Lake Ohrid are stored at the University
of Cologne, Germany, where core opening, description, doc-
umentation, and initial analyses such as MSCL and X-ray
fluorescence (XRF) scanning are taking place. The primary
focus of current studies is the sediment sequence from the
DEEP site. For the XRF scanning, intervals are set to 2.5 mm,
which likely provides a decadal resolution. Visual inspection,
MS and XRF scanning data will be used to identify horizons
with tephras or cryptotephras. Such horizons will be sampled
and tephra identification will be carried out (cf. Vogel et al.,
2010b; Damaschke et al., 2013). The results combined with
palaeomagnetic measurements and chronostratigraphic tun-
ing will be applied to establish an age model.

Subsampling for geochemical, pollen and diatom analy-
ses will be carried out at consistent intervals of 16 cm on the
composite core after core correlation based on visual inspec-
tion and XRF data. Based on an estimated average sedimen-
tation rate of ca. 30 yrs cm−1 (430 m sediment column cor-
responding to ca. 1.2 Ma), the 16 cm intervals correspond to
a resolution of ca. 500 years. Shorter intervals with higher
temporal resolution are envisaged for future studies to inves-
tigate, for example, glacial to interglacial transitions or other
selected events.

Core opening, description and documentation, and analy-
ses of the Cerava, Gradište and Peštani sediment sequences
will be carried out after the DEEP site. Combining the DEEP
site with the peripheral drill sites will allow us to achieve the
main goals of the SCOPSCO project. Altogether, this makes
Lake Ohrid a key site of global importance for improving
our understanding of Quaternary environmental change in
the northern Mediterranean and general triggers of evolution-
ary events.
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