1,691 research outputs found

    Targeting the Immune System to Fight Cancer Using Chemical Receptor Homing Vectors Carrying Polyinosine/Cytosine (PolyIC)

    Get PDF
    Cancer researchers have been looking for ways to harness the immune system and to reinstate immune surveillance, to kill cancer cells without collateral damage. Here we scan current approaches to targeting the immune system against cancer, and emphasize our own approach. We are using chemical vectors attached to a specific ligand, to introduce synthetic dsRNA, polyinosine/cytosine (polyIC), into tumors. The ligand binds to a receptor protein that is overexpressed on the surface of the tumor cells. Upon ligand binding, the receptor complex is internalized, introducing the polyIC into the cell. In this fashion a large amount of synthetic dsRNA can be internalized, leading to the activation of dsRNA-binding proteins, such as dsRNA dependent protein kinase (PKR), Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-1), and melanoma differentiation-associated gene 5 (MDA5). The simultaneous activation of these signaling proteins leads to the rapid demise of the targeted cell and to cytokine secretion. The cytokines lead to a strong bystander effect and to the recruitment of immune cells that converge upon the targeted cells. The bystander effects lead to the destruction of neighboring tumor cells not targeted themselves by the vector. Normal cells, being more robust than tumor cells, survive. This strategy has several advantages: (1) recruitment of the immune system is localized to the tumor. (2) The response is rapid, leading to fast tumor eradication. (3) The bystander effects lead to the eradication of tumor cells not harboring the target. (4) The multiplicity of pro-death signaling pathways elicited by PolyIC minimizes the likelihood of the emergence of resistance. In this chapter we focus on EGFR as the targeted receptor, which is overexpressed in many tumors. In principle, the strategy can be extended to other tumors that overexpress a protein that can be internalized by a ligand, which can be a small molecule, a single chain antibody, or an affibody

    Loss of Robustness and Addiction to IGF1 during Early Keratinocyte Transformation by Human Papilloma Virus 16

    Get PDF
    Infection of keratinocytes with high risk human Papilloma virus causes immortalization, and when followed by further mutations, leads to cervical cancer and other anogenital tumors. Here we monitor the progressive loss of robustness in an in vitro model of the early stages of transformation that comprises normal keratinocytes and progressive passages of HPV16 immortalized cells. As transformation progresses, the cells acquire higher proliferation rates and gain the ability to grow in soft agar. Concurrently, the cells lose robustness, becoming more sensitive to serum starvation and DNA damage by Cisplatin. Loss of robustness in the course of transformation correlates with significant reductions in the activities of the anti-apoptotic proteins PKB/Akt, Erk, Jnk and p38 both under normal growth conditions and upon stress. In parallel, loss of robustness is manifested by the shrinkage of the number of growth factors that can rescue starving cells from apoptosis, with the emergence of dependence solely on IGF1. Treatment with IGF1 activates PKB/Akt and Jnk and through them inhibits p53, rescuing the cells from starvation. We conclude that transformation in this model induces higher susceptibility of cells to stress due to reduced anti-apoptotic signaling and hyper-activation of p53 upon stress

    Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling.

    Get PDF
    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment

    Convergence of Logic of Cellular Regulation in Different Premalignant Cells by an Information Theoretic Approach

    Get PDF
    Abstract Background Surprisal analysis is a thermodynamic-like molecular level approach that identifies biological constraints that prevents the entropy from reaching its maximum. To examine the significance of altered gene expression levels in tumorigenesis we apply surprisal analysis to the WI-38 model through its precancerous states. The constraints identified by the analysis are transcription patterns underlying the process of transformation. Each pattern highlights the role of a group of genes that act coherently to define a transformed phenotype. Results We identify a major transcription pattern that represents a contraction of signaling networks accompanied by induction of cellular proliferation and protein metabolism, which is essential for full transformation. In addition, a more minor, "tumor signature" transcription pattern completes the transformation process. The variation with time of the importance of each transcription pattern is determined. Midway through the transformation, at the stage when cells switch from slow to fast growth rate, the major transcription pattern undergoes a total inversion of its weight while the more minor pattern does not contribute before that stage. Conclusions A similar network reorganization occurs in two very different cellular transformation models: WI-38 and the cervical cancer HF1 models. Our results suggest that despite differences in a list of transcripts expressed in different cancer models the rationale of the network reorganization remains essentially the same

    Increased accuracy of ligand sensing by receptor internalization

    Full text link
    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review
    corecore