10,698 research outputs found

    First steps towards the certification of an ARM simulator using Compcert

    Get PDF
    The simulation of Systems-on-Chip (SoC) is nowadays a hot topic because, beyond providing many debugging facilities, it allows the development of dedicated software before the hardware is available. Low-consumption CPUs such as ARM play a central role in SoC. However, the effectiveness of simulation depends on the faithfulness of the simulator. To this effect, we propose here to prove significant parts of such a simulator, SimSoC. Basically, on one hand, we develop a Coq formal model of the ARM architecture while on the other hand, we consider a version of the simulator including components written in Compcert-C. Then we prove that the simulation of ARM operations, according to Compcert-C formal semantics, conforms to the expected formal model of ARM. Size issues are partly dealt with using automatic generation of significant parts of the Coq model and of SimSoC from the official textual definition of ARM. However, this is still a long-term project. We report here the current stage of our efforts and discuss in particular the use of Compcert-C in this framework.Comment: First International Conference on Certified Programs and Proofs 7086 (2011

    Complete hyperfine Paschen-Back regime at relatively small magnetic fields realized in Potassium nano-cell

    Full text link
    A one-dimensional nano-metric-thin cell (NC) filled with potassium metal has been built and used to study optical atomic transitions in external magnetic fields. These studies benefit from the remarkable features of the NC allowing one to use λ/2\lambda/2- and λ\lambda-methods for effective investigations of individual transitions of the K D_1 line. The methods are based on strong narrowing of the absorption spectrum of the atomic column of thickness L equal to λ/2\lambda/2 and to λ\lambda(with \lambda = 770\un{nm} being the resonant laser radiation wavelength). In particular, for a π\pi-polarized radiation excitation the λ\lambda-method allows us to resolve eight atomic transitions (in two groups of four atomic transitions) and to reveal two remarkable transitions that we call Guiding Transitions (GT). The probabilities of all other transitions inside the group (as well as the frequency slope versus magnetic field) tend to the probability and to the slope of GT. Note that for circular polarization there is one group of four transitions and GT do not exist. Among eight transitions there are also two transitions (forbidden for BB = 0) with the probabilities undergoing strong modification under the influence of magnetic fields. Practically the complete hyperfine Paschen-Back regime is observed at relatively low (\sim 1\un{kG}) magnetic fields. Note that for K D2D_2 line GT are absent. Theoretical models describe the experiment very well.Comment: 6 page

    Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions

    Full text link
    Starting from equations obeyed by functions involving the first or the second derivatives of the biconfluent Heun function, we construct two expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta functions. The first series applies single Beta functions as expansion functions, while the second one involves a combination of two Beta functions. The coefficients of expansions obey four- and five-term recurrence relations, respectively. It is shown that the proposed technique is potent to produce series solutions in terms of other special functions. Two examples of such expansions in terms of the incomplete Gamma functions are presente

    Stimulated Raman Adiabatic Passage via bright state in Lambda medium of unequal oscillator strengths

    Full text link
    We consider the population transfer process in a Lambda-type atomic medium of unequal oscillator strengths by stimulated Raman adiabatic passage via bright-state (b-STIRAP) taking into account propagation effects. Using both analytic and numerical methods we show that the population transfer efficiency is sensitive to the ratio q_p/q_s of the transition oscillator strengths. We find that the case q_p>q_s is more detrimental for population transfer process as compared to the case where qpqsq_p \leq q_s. For this case it is possible to increase medium dimensions while permitting efficient population transfer. A criterion determining the interaction adiabaticity in the course of propagation process is found. We also show that the mixing parameter characterizing the population transfer propagates superluminally

    Localization analysis under dynamic loading

    Get PDF
    A finite element method proposed by Ortiz et al. (1987) is used to study shear band formation in rate dependent and rate independent pressure sensitive solids under dynamic loading. Under these conditions, shear bands are observed to propagate in an irregular fashion in time and space. In particular, the development of multiple shear bands appears to be a prevalent mechanism of deformation at sufficiently high impact velocities

    Bias-free Measurement of Giant Molecular Cloud Properties

    Full text link
    (abridged) We review methods for measuring the sizes, line widths, and luminosities of giant molecular clouds (GMCs) in molecular-line data cubes with low resolution and sensitivity. We find that moment methods are robust and sensitive -- making full use of both position and intensity information -- and we recommend a standard method to measure the position angle, major and minor axis sizes, line width, and luminosity using moment methods. Without corrections for the effects of beam convolution and sensitivity to GMC properties, the resulting properties may be severely biased. This is particularly true for extragalactic observations, where resolution and sensitivity effects often bias measured values by 40% or more. We correct for finite spatial and spectral resolutions with a simple deconvolution and we correct for sensitivity biases by extrapolating properties of a GMC to those we would expect to measure with perfect sensitivity. The resulting method recovers the properties of a GMC to within 10% over a large range of resolutions and sensitivities, provided the clouds are marginally resolved with a peak signal-to-noise ratio greater than 10. We note that interferometers systematically underestimate cloud properties, particularly the flux from a cloud. The degree of bias depends on the sensitivity of the observations and the (u,v) coverage of the observations. In the Appendix to the paper we present a conservative, new decomposition algorithm for identifying GMCs in molecular-line observations. This algorithm treats the data in physical rather than observational units, does not produce spurious clouds in the presence of noise, and is sensitive to a range of morphologies. As a result, the output of this decomposition should be directly comparable among disparate data sets.Comment: Accepted to PASP (19 pgs., 12 figures). The submission describes an IDL software package available from http://cfa-www.harvard.edu/~erosolow/cprops

    Infrared Sources in the Small Magellanic Cloud: First Results

    Get PDF
    We have imaged the entire Small Magellanic Cloud (SMC), one of the two nearest star-forming dwarf galaxies, in all seven IRAC and MIPS bands. The low mass and low metallicity (1/6 solar) of the SMC make it the best local analog for primitive galaxies at high redshift. By studying the properties of dust and star formation in the SMC at high resolution, we can gain understanding of similar distant galaxies that can only be observed in much less detail. In this contribution, we present a preliminary analysis of the properties of point sources detected in the Spitzer Survey of the Small Magellanic Cloud (S^(3)MC). We find ∼400,000 unresolved or marginally resolved sources in our IRAC images, and our MIPS 24 μm mosaic contains ~17,000 point sources. Source counts decline rapidly at the longer MIPS wavelengths. We use colorcolor and color-magnitude diagrams to investigate the nature of these objects, cross-correlate their positions with those of known sources at other wavelengths, and show examples of how these data can be used to identify interesting classes of objects such as carbon stars and young stellar objects. For additional examples of some of the questions that can be studied with these data, please see the accompanying contributions by Alberto Bolatto (survey information and images), Adam Leroy (dust and gas in a low-metallicity environment), Karin Sandstrom (far infrared-radio continuum correlation), and Snezana Stanimirovic (on a young supernova remnant in the The SMC) mosaic images and point source catalogs we have made have been released to the public on our website (http://celestial.berkeley.edu/spitzer)
    corecore