2,583 research outputs found

    Perfect imaging: they don't do it with mirrors

    Full text link
    Imaging with a spherical mirror in empty space is compared with the case when the mirror is filled with the medium of Maxwell's fish eye. Exact time-dependent solutions of Maxwell's equations show that perfect imaging is not achievable with an electrical ideal mirror on its own, but with Maxwell's fish eye in the regime when it implements a curved geometry for full electromagnetic waves

    Collimating lenses from non-Euclidean transformation optics

    Full text link
    Based on the non-Euclidean transformation optics, we design a thin metamaterial lens that can achieve wide-beam radiation by embedding a simple source (a point source in three-dimensional case or a line current source in two-dimensional case). The scheme is performed on a layer-by-layer geometry to convert curved surfaces in virtual space to flat sheets, which pile up and form the entire lens in physical space. Compared to previous designs, the lens has no extreme material parameters. Simulation results confirm its functionality.Comment: 12 pages, 6 figure

    Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon

    Get PDF
    We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998)

    Distinguishing two single-mode Gaussian states by homodyne detection: An information-theoretic approach

    Full text link
    It is known that the quantum fidelity, as a measure of the closeness of two quantum states, is operationally equivalent to the minimal overlap of the probability distributions of the two states over all possible POVMs; the POVM realizing the minimum is optimal. We consider the ability of homodyne detection to distinguish two single-mode Gaussian states, and investigate to what extent it is optimal in this information-theoretic sense. We completely identify the conditions under which homodyne detection makes an optimal distinction between two single-mode Gaussian states of the same mean, and show that if the Gaussian states are pure, they are always optimally distinguished.Comment: 6 pages, 4 figures, published version with a detailed discussio

    Quantum levitation by left-handed metamaterials

    Get PDF
    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors

    Entanglement of identical particles and reference phase uncertainty

    Get PDF
    We have recently introduced a measure of the bipartite entanglement of identical particles, E_P, based on the principle that entanglement should be accessible for use as a resource in quantum information processing. We show here that particle entanglement is limited by the lack of a reference phase shared by the two parties, and that the entanglement is constrained to reference-phase invariant subspaces. The super-additivity of E_P results from the fact that this constraint is weaker for combined systems. A shared reference phase can only be established by transferring particles between the parties, that is, with additional nonlocal resources. We show how this nonlocal operation can increase the particle entanglement.Comment: 8 pages, no figures. Invited talk given at EQIS'03, Kyoto, September, 2003. Minor typos corrected, 1 reference adde

    Vacuum as a less hostile environment to entanglement

    Full text link
    We derive sufficient conditions for infinite-dimensional systems whose entanglement is not completely lost in a finite time during its decoherence by a passive interaction with local vacuum environments. The sufficient conditions allow us to clarify a class of bipartite entangled states which preserve their entanglement or, in other words, are tolerant against decoherence in a vacuum. We also discuss such a class for entangled qubits.Comment: Replaced by the published versio

    New intensity and visibility aspects of a double loop neutron interferometer

    Full text link
    Various phase shifters and absorbers can be put into the arms of a double loop neutron interferometer. The mean intensity levels of the forward and diffracted beams behind an empty four plate interferometer of this type have been calculated. It is shown that the intensities in the forward and diffracted direction can be made equal using certain absorbers. In this case the interferometer can be regarded as a 50/50 beam splitter. Furthermore the visibilities of single and double loop interferometers are compared to each other by varying the transmission in the first loop using different absorbers. It can be shown that the visibility becomes exactly 1 using a phase shifter in the second loop. In this case the phase shifter in the second loop must be strongly correlated to the transmission coefficient of the absorber in the first loop. Using such a device homodyne-like measurements of very weak signals should become possible.Comment: 12 pages, 9 figures, accepted for publication in the Journal of Optics B - Quantum and Semiclassical Optic

    Recovery and serious mental illness: a review of current clinical and research paradigms and future directions

    Get PDF
    Introduction: Recovery from serious mental illness has historically not been considered a likely or even possible outcome. However, a range of evidence suggests the courses of SMI are heterogeneous with recovery being the most likely outcome. One barrier to studying recovery in SMI is that recovery has been operationalized in divergent and seemingly incompatible ways, as an objective outcome, versus a subjective process. Areas Covered: This paper offers a review of recovery as a subjective process and recovery as an objective outcome; contrasts methodologies utilized by each approach to assess recovery; reports rates and correlates of recovery; and explores the relationship between objective and subjective forms of recovery. Expert Commentary: There are two commonalities of approaching recovery as a subjective process and an objective outcome: (i) the need to make meaning out of one’s experiences to engage in either type of recovery and (ii) there exist many threats to engaging in meaning making that may impact the likelihood of moving toward recovery. We offer four clinical implications that stem from these two commonalities within a divided approach to the concept of recovery from SMI
    • …
    corecore