5,979 research outputs found

    Water requirement and yield of fig trees under different drip irrigation management.

    Get PDF
    This work aimed to study the effect of drip irrigation management on growth and yield of the 'Roxo de Valinhos' fig tree (Ficus carica L.), at three years old, and to determine crop coefficients (Kc) and its water requirement (ETc) under Baixada Fluminense climate and soil conditions, state of Rio de Janeiro, Brazil. The study was carried out in the experimental area of SIPA (Sistema Integrado de Produção Agroecológica) in Seropédica, Rio de Janeiro State, from July 2011 to May 2012. The experimental area was divided in two blocks, named B1 (sandy clay loam texture) and B2 (loamy sand texture). In each block, irrigation frequencies (IF) of two (T1) and four days (T2) were evaluated, as well as the irrigation absence (T3). Irrigation management and water consumption determination were performed through the soil water balance, using the TDR technique. Plant growth was not affected by IF, differing only in the number of produced internodes. For both soil textures, the mean Kc was 0.60, with a significant difference (p<0.05) only for IF. The estimated mean yield showed no significant differences between both textural classes, ranging from 6,612 kg ha-1 (T3) to 8,554 kg ha-1 (T1). This study indicates the importance of irrigation frequency in the irrigation management of fig trees cultivated in soils with different physical characteristics

    Enzymatic hydrolysis of salmon oil by native lipases: optimization of process parameters

    Get PDF
    In an attempt to concentrate the content of n-3 polyunsaturated fatty acids (n-3 PUFA) in the residual acylglycerol, salmon oil (n-3 PUFA content of 30.1%) was hydrolyzed with three kinds of native microbial lipases (Aspergillus niger, Rhizopus javanicus and Penicillium solitum). For each lipase, a response surface methodology was used to obtain maximum PUFA content and to optimize the parameters of enzymatic reactions with respect to important reaction variables; temperature (X1), amount of lipases (X2) and water/oil ratio (X3). Based on these results, optimal reaction conditions were established. Aspergillus niger lipase was the most effective in concentrating n-3 PUFA. The degree of hydrolysis (60%) led to an increase in the docosahexaenoic acid (DHA) content from 14.4% in the original oil to 34.0% (2.4-fold enrichment) in the residual acylglycerol under optimum conditions: enzyme concentration of 500 U g-1 oil, reaction temperature of 45 ºC and water/oil mass rate of 2:1 (m/m) after 24 h reaction.Três lipases microbianas nativas (Aspergillus niger, Rhizopus javanicus e Penicillium solitum) foram utilizadas na hidrólise do óleo de salmão (teor de AGPI n-3 de 30,1%) com o objetivo de concentrar o conteúdo de ácidos graxos poliinsaturados n-3 (AGPI n-3) nos acilgliceróis residuais. A metodologia de planejamento experimental e análise de superfície de resposta foi usada para se chegar às condições otimizadas de cada reação enzimática, utilizando as seguintes variáveis; temperatura (X1), quantidade de lipase (X2) e taxa de água/óleo (X3). Com base nos resultados do planejamento, a lipase de Aspergillus niger foi a mais eficiente na concentração dos AGPI n-3, sendo que as condições ótimas de reação foram: concentração de enzima de 500 U g-1 óleo, temperatura 45 ºC e taxa de água/óleo de 2:1 m/m após 24 h de reação. O grau de hidrólise (60%) conduziu a um aumento do conteúdo de ácido docosahexaenóico (DHA) de 14,4% para 34,0% (enriquecimento de 2,4 vezes) nos acilgliceróis residuais após a hidrólise do óleo de salmão.117124Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Apresentação

    Get PDF

    APRESENTAÇÃO

    Get PDF

    APRESENTAÇÃO

    Get PDF

    Methane Emissions by Lactating Ewes Grazing Italian Ryegrass

    Get PDF
    Agriculture contributes 13.5% of global emissions of greenhouse gases (GHG) (IPCC 2007), and about 50% of CH4 and 60% N2O from anthropogenic sources, while livestock contributes an additional 18% of global GHG emissions (FAO, 2006). Among the various sources with a potential negative impact on the environment, methane emissions for which livestock are mainly responsible have been highlighted for the agricultural sector. Studies on means to mitigate these emissions, and understand how integrated crop and livestock production systems may contribute to the reduction of greenhouse gases, are essential for the creation of public policies for environmental preservation. The objective in this study was to evaluate how strategies for grazing management can influence animal production and emission of methane in areas of crop-livestock integration

    APRESENTAÇÃO

    Get PDF

    APRESENTAÇÃO

    Get PDF
    corecore