533 research outputs found

    Critical exponents from parallel plate geometries subject to periodic and antiperiodic boundary conditions

    Full text link
    We introduce a renormalized 1PI vertex part scalar field theory setting in momentum space to computing the critical exponents ν\nu and η\eta, at least at two-loop order, for a layered parallel plate geometry separated by a distance L, with periodic as well as antiperiodic boundary conditions on the plates. We utilize massive and massless fields in order to extract the exponents in independent ultraviolet and infrared scaling analysis, respectively, which are required in a complete description of the scaling regions for finite size systems. We prove that fixed points and other critical amounts either in the ultraviolet or in the infrared regime dependent on the plates boundary condition are a general feature of normalization conditions. We introduce a new description of typical crossover regimes occurring in finite size systems. Avoiding these crossovers, the three regions of finite size scaling present for each of these boundary conditions are shown to be indistinguishable in the results of the exponents in periodic and antiperiodic conditions, which coincide with those from the (bulk) infinite system.Comment: Modified introduction and some references; new crossover regimes discussion improved; Appendixes expanded. 48 pages, no figure

    Human-Data Interaction Syllabus for Undergraduate and Graduate Courses

    Get PDF
    The phenomenon of the data deluge is a reality and the volume of data produced by people and companies is much greater than what can be handled and analyzed. Data play a crucial role in guiding the efficient utilization of technological resources for companies, aiding them in product and service management. Moreover, individuals who have become adept data producers and consumers are increasingly orienting their lives toward data. To address this evolving trend, there is a growing imperative to educate Computing professionals. These professionals are required to design technology solutions that facilitate the synergy between individuals and data, a phenomenon known as Human-Data Interaction (HDI). This paper introduces a suggested minimum syllabus for HDI courses, with the aim of addressing the key themes associated with the interaction between individuals and data. The complexity and depth of HDI topics justify a dedicated course, preventing the risk of essential content being fragmented or inadequately covered if dispersed across different courses

    Quantum scattering in one dimension

    Get PDF
    A self-contained discussion of nonrelativistic quantum scattering is presented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concept of partial-wave decomposition, phase shift, optical theorem and effective-range expansion.Comment: 8 page

    Hydromorphological implications of local tributary widening for river rehabilitation

    Get PDF
    The hydromorphological implications of the local widening of a tributary where it enters a confluence were investigated in a laboratory setting that is representative of the 20 major confluences on the channelized Upper Rhone River. Although local tributary widening reduces the confluence angle, it amplifies the hydromorphosedimentary processes in the confluence hydrodynamic zone (CHZ), because local widening reduces the effective flow area, causing increased tributary velocities and momentum flux. The reduction in effective flow area is caused by an increase in bed elevation and by lateral constriction of the flow induced by flow stagnation at the upstream corner of the confluence. The increased tributary velocities amplify the two-layer flow structure in the CHZ. Flow originating from the tributary is confined to the upper part of the water column and is more markedly directed outward than flow in the lower part of the water column originating from the main channel. A shear layer characterized by increased turbulence activity develops at the interface between the two flow layers. The increased tributary velocities enhance bed discordance, the penetration of the tributary into the CHZ and the channel bed gradients in the postconfluence channel. The results indicate that local tributary widening can enhance heterogeneity in sediment substrate, flow velocities and flow depths. Widening may therefore enhance local habitat and improve the connectivity of the tributary to the main river network. This may, in turn, provide favorable conditions for the improvement and reestablishment of ecological river functions, without having adverse impact on flood safety

    Flow and sediment dynamics in channel confluences

    Get PDF
    Confluences with relatively low discharge and momentum flux ratios where a small steep tributary with a high supply of poorly sorted sediment joins a large, low-gradient main channel commonly occur in nature, but they have not yet been investigated. Measurements of the three-dimensional velocity field, turbulence, sediment transport, bed material grain size and morphology are reported in a laboratory setting that is representative of confluences on the Upper Rhone River, Switzerland. The difference between the low-flow depth in the steep tributary and the higher flow depth in the main channel creates a marked bed discordance in the tributary zone. Due to this bed discordance, the tributary flow penetrates into the main channel mainly in the upper part of the water column, whereas the main-channel flow is hardly hindered by the tributary in the lower part of the water column, giving rise to a two-layer flow structure in the confluence zone. In confluences with high supply of coarse sediment from the tributary, the development of a deposition bar downstream from the confluence reduces the flow area and causes flow acceleration that contributes to an increase in sediment transport capacity. The sediment supplied by the tributary is mainly sorted and transported on the face of the bar by the near-bed flow originating from the main channel. The sediment transport capacity is further increased by the three-dimensionality of the flow, which is characterized by maximum velocities occurring near the bed, and by a considerable increase in turbulent kinetic energy generated in the shear layer at the interface of the flows originating from the main channel and the tributary. A conceptual model is proposed for the hydro-morpho-sedimentary processes, and compared to existing conceptual models for confluences with different characteristics

    Critical behavior of generic competing systems

    Full text link
    Generic higher character Lifshitz critical behaviors are described using field theory and ϵL\epsilon_{L}-expansion renormalization group methods. These critical behaviors describe systems with arbitrary competing interactions. We derive the scaling relations and the critical exponents at the two-loop level for anisotropic and isotropic points of arbitrary higher character. The framework is illustrated for the NN-vector ϕ4\phi^{4} model describing a dd-dimensional system. The anisotropic behaviors are derived in terms of many independent renormalization group transformations, each one characterized by independent correlation lengths. The isotropic behaviors can be understood using only one renormalization group transformation. Feynman diagrams are solved for the anisotropic behaviors using a new dimensional regularization associated to a generalized orthogonal approximation. The isotropic diagrams are treated using this approximation as well as with a new exact technique to compute the integrals. The entire procedure leads to the analytical solution of generic loop order integrals with arbitrary external momenta. The property of universality class reduction is also satisfied when the competing interactions are turned off. We show how the results presented here reduce to the usual mm-fold Lifshitz critical behaviors for both isotropic and anisotropic criticalities.Comment: RevTex, 54 pages, 3 figures; version accepted for publication in Physical Review

    A new picture of the Lifshitz critical behavior

    Full text link
    New field theoretic renormalization group methods are developed to describe in a unified fashion the critical exponents of an m-fold Lifshitz point at the two-loop order in the anisotropic (m not equal to d) and isotropic (m=d close to 8) situations. The general theory is illustrated for the N-vector phi^4 model describing a d-dimensional system. A new regularization and renormalization procedure is presented for both types of Lifshitz behavior. The anisotropic cases are formulated with two independent renormalization group transformations. The description of the isotropic behavior requires only one type of renormalization group transformation. We point out the conceptual advantages implicit in this picture and show how this framework is related to other previous renormalization group treatments for the Lifshitz problem. The Feynman diagrams of arbitrary loop-order can be performed analytically provided these integrals are considered to be homogeneous functions of the external momenta scales. The anisotropic universality class (N,d,m) reduces easily to the Ising-like (N,d) when m=0. We show that the isotropic universality class (N,m) when m is close to 8 cannot be obtained from the anisotropic one in the limit d --> m near 8. The exponents for the uniaxial case d=3, N=m=1 are in good agreement with recent Monte Carlo simulations for the ANNNI model.Comment: 48 pages, no figures, two typos fixe

    Description of the nest of two Thamnophilidae species in Brazilian Amazon

    Get PDF
    Many Thamnophilidae species have poorly known breeding. Here we describe the nests and eggs of two species, Epinecrophylla ornata from a terra firme forest, and Myrmotherula assimilis from a flooded forest in Brazil. Knowledge on the natural history of these species is important for future conservation strategies. © 2016, Sociedade Brasileira de Ornitologia. All rights reserved

    Immunization With The Maebl M2 Domain Protects Against Lethal Plasmodium Yoelii Infection.

    Get PDF
    Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.833781-379
    corecore