8 research outputs found

    Measurement Report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion Island, Indian Ocean): overview of results from the BIO-MAÏDO campaign

    No full text
    Under review for Atmospheric Chemistry and Physics (ACP).The BIO-MAÏDO (Bio-physicochemistry of tropical clouds at Maïdo (Réunion Island): processes and impacts on secondary organic aerosols formation) campaign was conducted from the 13th of March to the 4th of April 2019 on the tropical Réunion Island and implied several scientific teams and state-of-the-art instrumentation. The campaign was part of the BIO-MAÏDO project with the main objective is to improve our understanding of cloud impacts on the formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds (BVOC) precursors in a tropical environment. Instruments were deployed at five sites: a receptor site, the Maïdo observatory (MO) at 2165 m asl, and four sites along the slope of the Maïdo mountain. The obtained dataset includes measurements of the gas-phase mixing ratio of volatile organic compounds (VOC), the characterization of the physical, chemical, and biological (bacterial diversity) properties of aerosols and the characterization of the physical, chemical and biological (identification of viable bacteria through culture-based approaches) properties of the cloud water. In addition, the turbulent parameters of the boundary layer, radiative fluxes, and emissions fluxes of BVOC from the surrounding vegetation were measured to help with the interpretation of the observed chemical concentrations in the different phases. Dynamical analyses show two preferred trajectories routes for air masses arriving at MO during the daytime both corresponding to the return branches of the trade winds associated with the up-slopes thermal breezes. These air masses likely encountered cloud processing during transport along the slope. The highest mixing ratio of oxygenated VOC (OVOC) were measured above the site located in the endemic forest and the highest contribution of OVOC to total VOC at MO. Chemical composition of particles during the daytime shows a higher concentration of oxalic acid and a more oxidized organic aerosol at MO than at other sites along the slope. This is a signature of photochemical aerosols aging along the slope potentially influenced by cloud processing. Despite an in-depth analysis of organic compounds in cloud water, around 80% on average of dissolved organic compounds is undefined highlighting the complexity of the cloud organic matter

    Measurement Report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion Island, Indian Ocean): overview of results from the BIO-MAÏDO campaign

    No full text
    Under review for Atmospheric Chemistry and Physics (ACP).International audienceThe BIO-MAÏDO (Bio-physicochemistry of tropical clouds at Maïdo: processes and impacts on secondary organic aerosols formation) campaign was conducted from 13 March to 4 April 2019 on the tropical island of Réunion. The main objective of the project was to improve understanding of cloud impacts on the formation of secondary organic aerosols (SOA) from biogenic volatile organic compound (BVOC) precursors in a tropical environment. Instruments were deployed at five sites: a receptor site, Maïdo Observatory (MO) at 2165 m a.s.l. and four sites along the slope of the Maïdo mountain. Observations include measurements of volatile organic compounds (VOCs) and characterization of the physical, chemical and biological (bacterial diversity and culture-based approaches) properties of aerosols and cloud water. Turbulent parameters of the boundary layer, radiative fluxes and emissions fluxes of BVOCs from the surrounding vegetation were measured to help interpret observed chemical concentrations in the different phases. Dynamical analyses showed two preferred trajectory routes for air masses arriving at MO during the daytime. Both trajectories correspond to return branches of the trade winds associated with upslope thermal breezes, where air masses likely encountered cloud processing. The highest mixing ratios of oxygenated VOCs (OVOCs) were measured above the site located in the endemic forest and the highest contribution of OVOCs to total VOCs at MO. Chemical compositions of particles during daytime showed higher concentrations of oxalic acid, a tracer of cloud processing and photochemical aging, and a more oxidized organic aerosol at MO than at other sites. Approximately 20 % of the dissolved organic compounds were analyzed. Additional analyses by ultra-high-resolution mass spectrometry will explore the complexity of the missing cloud organic matter
    corecore