58 research outputs found

    Probing empirical contact networks by simulation of spreading dynamics

    Full text link
    Disease, opinions, ideas, gossip, etc. all spread on social networks. How these networks are connected (the network structure) influences the dynamics of the spreading processes. By investigating these relationships one gains understanding both of the spreading itself and the structure and function of the contact network. In this chapter, we will summarize the recent literature using simulation of spreading processes on top of empirical contact data. We will mostly focus on disease simulations on temporal proximity networks -- networks recording who is close to whom, at what time -- but also cover other types of networks and spreading processes. We analyze 29 empirical networks to illustrate the methods

    A Markov model for inferring flows in directed contact networks

    Full text link
    Directed contact networks (DCNs) are a particularly flexible and convenient class of temporal networks, useful for modeling and analyzing the transfer of discrete quantities in communications, transportation, epidemiology, etc. Transfers modeled by contacts typically underlie flows that associate multiple contacts based on their spatiotemporal relationships. To infer these flows, we introduce a simple inhomogeneous Markov model associated to a DCN and show how it can be effectively used for data reduction and anomaly detection through an example of kernel-level information transfers within a computer.Comment: 12 page

    Exploring concurrency and reachability in the presence of high temporal resolution

    Full text link
    Network properties govern the rate and extent of spreading processes on networks, from simple contagions to complex cascades. Recent advances have extended the study of spreading processes from static networks to temporal networks, where nodes and links appear and disappear. We review previous studies on the effects of temporal connectivity for understanding the spreading rate and outbreak size of model infection processes. We focus on the effects of "accessibility", whether there is a temporally consistent path from one node to another, and "reachability", the density of the corresponding "accessibility graph" representation of the temporal network. We study reachability in terms of the overall level of temporal concurrency between edges, quantifying the overlap of edges in time. We explore the role of temporal resolution of contacts by calculating reachability with the full temporal information as well as with a simplified interval representation approximation that demands less computation. We demonstrate the extent to which the computed reachability changes due to this simplified interval representation.Comment: To appear in Holme and Saramaki (Editors). "Temporal Network Theory". Springer- Nature, New York. 201

    Bursts of vertex activation and epidemics in evolving networks

    Get PDF
    The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability

    Diffusion on networked systems is a question of time or structure

    Get PDF
    Network science investigates the architecture of complex systems to understand their functional and dynamical properties. Structural patterns such as communities shape diffusive processes on networks. However, these results hold under the strong assumption that networks are static entities where temporal aspects can be neglected. Here we propose a generalized formalism for linear dynamics on complex networks, able to incorporate statistical properties of the timings at which events occur. We show that the diffusion dynamics is affected by the network community structure and by the temporal properties of waiting times between events. We identify the main mechanism—network structure, burstiness or fat tails of waiting times—determining the relaxation times of stochastic processes on temporal networks, in the absence of temporal–structure correlations. We identify situations when fine-scale structure can be discarded from the description of the dynamics or, conversely, when a fully detailed model is required due to temporal heterogeneities

    From sparse to dense and from assortative to disassortative in online social networks

    Full text link
    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.Comment: 10 pages, 7 figures and 2 table

    Discovering universal statistical laws of complex networks

    Full text link
    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their generalisation power, which we identify with large structural variability and absence of constraints imposed by the construction scheme. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This allows, for instance, to infer global features from local ones using regression models trained on networks with high generalisation power. Our results confirm and extend previous findings regarding the synchronisation properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks with good approximation. Finally, we demonstrate on three different data sets (C. elegans' neuronal network, R. prowazekii's metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models

    Quantifying the effect of temporal resolution on time-varying networks

    Get PDF
    Time-varying networks describe a wide array of systems whose constituents and interactions evolve over time. They are defined by an ordered stream of interactions between nodes, yet they are often represented in terms of a sequence of static networks, each aggregating all edges and nodes present in a time interval of size Δt. In this work we quantify the impact of an arbitrary Δt on the description of a dynamical process taking place upon a time-varying network. We focus on the elementary random walk, and put forth a simple mathematical framework that well describes the behavior observed on real datasets. The analytical description of the bias introduced by time integrating techniques represents a step forward in the correct characterization of dynamical processes on time-varying graphs

    Heterogeneous length of stay of hosts’ movements and spatial epidemic spread

    Get PDF
    Infectious diseases outbreaks are often characterized by a spatial component induced by hosts’ distribution, mobility, and interactions. Spatial models that incorporate hosts’ movements are being used to describe these processes, to investigate the conditions for propagation, and to predict the spatial spread. Several assumptions are being considered to model hosts’ movements, ranging from permanent movements to daily commuting, where the time spent at destination is either infinite or assumes a homogeneous fixed value, respectively. Prompted by empirical evidence, here we introduce a general metapopulation approach to model the disease dynamics in a spatially structured population where the mobility process is characterized by a heterogeneous length of stay. We show that large fluctuations of the length of stay, as observed in reality, can have a significant impact on the threshold conditions for the global epidemic invasion, thus altering model predictions based on simple assumptions, and displaying important public health implications

    Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools

    Get PDF
    Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to "zero-tolerance" policies by unveiling the crime and/or property types most likely to affect each other
    corecore