223 research outputs found

    Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes

    Get PDF
    Background: Micropollutants in bodies of water represent many challenges. We addressedthese challenges by the application of constructed wetlands, which represent advanced treatmenttechnology for the removal of micropollutants from water. However, which mechanisms specificallycontribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removalof 27 micropollutants by bioremediation. For this, macrophytesPhragmites australis,Iris pseudacorusandLythrum salicariawere taken from established wetlands, and a special experimental set-up wasdesigned. In order to better understand the impact of the rhizosphere microbiome, we determinedthe microbial composition using 16S rRNA gene sequencing and investigated the role of identifiedgenera in the micropollutant removal of micropollutants. Moreover, we studied the colonizationof macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic rela-tionship with plants. This symbiosis could result in increased removal of present micropollutants.Results: We foundIris pseudacorusto be the most successful bioremediative system, as it removed22 compounds, including persistent ones, with more than 80% efficiency. The most abundant generathat contributed to the removal of micropollutants werePseudomonas, Flavobacterium, Variovorax,Methylotenera, Reyranella, AmaricoccusandHydrogenophaga.Iris pseudacorusexhibited the highest colo-nization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizospheremicroorganisms on the removal of micropollutants

    Quantification of surface GalNAc ligands decorating nanostructured lipid carriers by UPLC-ELSD

    Get PDF
    Nanoparticles have been extensively studied for drug delivery and targeting to specific organs. The functionalization of the nanoparticle surface by site-specific ligands (antibodies, peptides, saccharides) can ensure efficient recognition and binding with relevant biological targets. One of the main challenges in the development of these decorated nanocarriers is the accurate quantification of the amount of ligands on the nanoparticle surface. In this study, nanostructured lipid carriers (NLC) were functionalized with N-acetyl-D-galactosamine (GalNAc) units, known to target the asialoglycoprotein receptor (ASGPR). Different molar percentages of GalNAc-functionalized surfactant (0%, 2%, 5%, and 14%) were used in the formulation. Based on ultra-high-performance liquid chromatography separation and evaporative light-scattering detection (UPLC-ELSD), an analytical method was developed to specifically quantify the amount of GalNAc units present at the NLC surface. This method allowed the accurate quantification of GalNAc surfactant and therefore gave some insights into the structural parameters of these multivalent ligand systems. Our data show that the GalNAc decorated NLC possess large numbers of ligands at their surface and suitable distances between them for efficient multivalent interaction with the ASGPR, and therefore promising liver-targeting efficiency

    An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance

    Full text link
    We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer Space Telescope (Spitzer) at 3.6 μ\mum, in addition to a Spitzer 4.5 μ\mum secondary eclipse. The precise HST transmission spectrum notably reveals a low-amplitude water feature with an unusual shape. Based on free retrieval analyses with varying molecular abundances, we find strong evidence for water absorption. Depending on model assumptions, we also find tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water abundance is generally ≲0.1×\lesssim 0.1\times solar (0.001--0.7×\times solar over a range of model assumptions), several orders of magnitude lower than expected from planet formation models based on the solar system metallicity trend. We also consider chemical equilibrium and self-consistent 1D radiative-convective equilibrium model fits and find they too prefer low metallicities ([M/H]≲−2[M/H] \lesssim -2, consistent with the free retrieval results). However, all the retrievals should be interpreted with some caution since they either require additional absorbers that are far out of chemical equilibrium to explain the shape of the spectrum or are simply poor fits to the data. Finally, we find the Spitzer secondary eclipse is indicative of full heat redistribution from KELT-11b's dayside to nightside, assuming a clear dayside. These potentially unusual results for KELT-11b's composition are suggestive of new challenges on the horizon for atmosphere and formation models in the face of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table

    The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease

    Get PDF
    Mutations in the mitochondrial fission factor GDAP1 are associated with severe peripheral neuropathies, but why the CNS remains unaffected is unclear. Using a Gdap1−/− mouse, Niemann et al. demonstrate that a CNS-expressed Gdap1 paralogue changes its subcellular localisation under oxidative stress conditions to also act as a mitochondrial fission facto

    Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics.

    Get PDF
    Aplysina aerophoba is an emerging model marine sponge, with a well-characterized microbial community in terms of diversity and structure. However, little is known about the expressed functional capabilities of its associated microbes. Here, we present the first metaproteomics-based study of the microbiome of A. aerophoba. We found that transport and degradation of halogenated and chloroaromatic compounds are common active processes in the sponge microbiomes. Our data further reveal that the highest number of proteins were affiliated to a sponge-associated Tectomicrobium, presumably from the family Entotheonellaceae, as well as to the well-known symbiont "Candidatus Synechococcus spongiarium", suggesting a high metabolic activity of these two microorganisms in situ. Evidence for nitric oxide (NO) conversion to nitrous oxide was consistently observed for Tectomicrobia across replicates, by production of the NorQ protein. Moreover, we found a potential energy-yielding pathway through CO oxidation by putative Chloroflexi bacteria. Finally, we observed expression of enzymes that may be involved in the transformation of chitin, glycoproteins, glycolipids and glucans into smaller molecules, consistent with glycosyl hydrolases predicted from analyses of the genomes of Poribacteria sponge symbionts. Thus, this study provides crucial links between expressed proteins and specific members of the A. aerophoba microbiome

    Forecasting the dynamics of a complex microbial community using integrated meta-omics.

    Get PDF
    peer reviewedPredicting the behaviour of complex microbial communities is challenging. However, this is essential for complex biotechnological processes such as those in biological wastewater treatment plants (BWWTPs), which require sustainable operation. Here we summarize 14 months of longitudinal meta-omics data from a BWWTP anaerobic tank into 17 temporal signals, explaining 91.1% of the temporal variance, and link those signals to ecological events within the community. We forecast the signals over the subsequent five years and use 21 extra samples collected at defined time intervals for testing and validation. Our forecasts are correct for six signals and hint on phenomena such as predation cycles. Using all the 17 forecasts and the environmental variables, we predict gene abundance and expression, with a coefficient of determination ≥0.87 for the subsequent three years. Our study demonstrates the ability to forecast the dynamics of open microbial ecosystems using interactions between community cycles and environmental parameters.R-AGR-0369 - ATTRACT A09/03 Sysbionama (01/02/2010 - 31/01/2015) - WILMES Pau

    Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.

    Get PDF
    The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease

    Forecasting of a complex microbial community using meta-omics

    Get PDF
    Microbial communities are complex assemblages whose dynamics are shaped by abiotic and biotic factors. A major challenge concerns correctly forecasting the community behaviour in the future. In this context, communities in biological wastewater treatment plants (BWWTPs) represent excellent model systems, because forecasting them is required to ultimately control and operate the plants in a sustainable manner. Here, we forecast the microbial community from the water-air interface of the anaerobic tank of a BWWTP via longitudinal meta-omics (metagenomics, metatranscriptomics and metaproteomics) data covering 14 months at weekly intervals. We extracted all the available time-dependent information, summarised it in 17 temporal signals (explaining 91.1 of the temporal variance) and linked them over time to rebuild the sequence of ecological phenomena behind the community dynamics. We forecasted the signals over the following five years and tested the predictions with 21 extra samples. We were able to correctly forecast five signals accounting for 22.5 of the time-dependent information in the system and generate mechanistic predictions on the ecological events in the community (e.g. a predation cycle involving bacteria, viruses and amoebas). Through the forecasting of the 17 signals and the environmental variables readings we reconstructed the gene abundance and expression for the following 5 years, showing a nearly perfect trend prediction (coefficient of determination >= 0.97) for the first 2 years. The study demonstrates the maturity of microbial ecology to forecast composition and gene expression of open microbial ecosystems using year-spanning interactions between community cycles and environmental parameters

    Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance.

    Get PDF
    The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts
    • …
    corecore