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Abstract

Microbial communities are complex assemblages whose dynamics are shaped by abiotic and

biotic factors. A major challenge concerns correctly forecasting the community behaviour in

the  future.  In  this  context,  communities  in  biological  wastewater  treatment  plants

(BWWTPs)  represent  excellent  model  systems,  because  forecasting  them is  required  to

ultimately control and operate  the plants in a sustainable manner.  Here,  we forecast  the

microbial community from the water-air interface of the anaerobic tank of a BWWTP via

longitudinal  meta-omics  (metagenomics,  metatranscriptomics  and  metaproteomics)  data

covering  14  months  at  weekly  intervals.  We extracted  all  the  available  time-dependent

information,  summarised  it  in  17  temporal  signals  (explaining  91.1%  of  the  temporal

variance)  and  linked  them over  time  to  rebuild  the  sequence  of  ecological  phenomena

behind the community dynamics. We forecasted the signals over the following five years

and tested the predictions with 21 extra samples. We were able to correctly forecast five

signals accounting for 22.5% of the time-dependent information in the system and generate

mechanistic predictions on the ecological events in the community (e.g. a predation cycle

involving bacteria, viruses and amoebas). Through the forecasting of the 17 signals and the

environmental variables readings we reconstructed the gene abundance and expression for

the  following  5  years,  showing  a  nearly  perfect  trend  prediction  (coefficient  of

determination ≥ 0.97) for the first 2 years. The study demonstrates the maturity of microbial

ecology to forecast composition and gene expression of open microbial ecosystems using

year-spanning interactions between community cycles and environmental parameters.
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Introduction

Microorganisms are ubiquitous  on planet  Earth1 and constitute  up to 17% of its  carbon

biomass2. Microbial lineages are continuously evolving to fill a  diverse set of ecological

niches, balancing their complementary metabolic capabilities to form communities1, which,

in turn, affect biogeochemical cycles3. Understanding the temporal dynamics of microbial

ecosystems and their links to the environment has become a common problem for many

research fields spanning biomedicine, agriculture, biotechnology and climate change. Whilst

forecasting  community  composition  dynamics  has  been  successfully  achieved  for  some

environments (e.g. Larsen et al.4 and García-Jiménez et al.5), the forecasting of their gene

expression dynamics over time and environmental conditions remains an open  challenge6.

One reason for this is the lack of a generalised framework that enables us to capitalise on the

recent advances in the meta-omics field. The surface community of Biological Wastewater

Treatment Plants (BWWTPs) represents an excellent candidate to become a model system

to  study  the  forecasting  of  microbial  behaviour  (dynamics  of  the  populations  and  their

related  gene expression)  for  a  threefold  reason7.  Firstly,  BWWTPs share the challenges

linked  to  most  environments,  as  it  is  an  open  system,  with  a  constant  influx  of  new

populations8 and exchange of matter and energy with the environment (i.e. access to open

air and sun irradiation). However, these challenges can be mitigated by keeping operational

parameters (e.g. pH, phosphate and nitrate) within a controllable range. Secondly, BWWTPs

communities share common metabolic pathways, albeit every local community has its own

equilibrium and its detailed makeup depends on the operational parameters, geographical

location and inflow composition9–11. Microbial communities in WWTPs possess dynamics at

different  temporal  scales  that  are  rather  well  described:  the  microbial  and  chemical

composition of the inflow is known to change according to the time of the day, the day of

the week and the  inflow volume12.  In  addition,  temperature-driven seasonality  has  been

found  to  influence  the  community9,13 as  well  as  multi-annual  trends14.  While  one-time

destructive perturbations  show an impact  on the community such as human intervention

(e.g. bleaching, shutdowns)14,15 and weather (i.e. rain)16, they are all monitored or encoded in

the  standard  operational  parameters  of  the  plants.  Finally,  forecasting  the  behaviour  of

microbial  communities  in  BWWTPs  is  highly  desirable  as  stable  operation  allows

reclamation of clean water as well as the harnessing of chemical energy17 while at the same

time its functioning has to minimise the production of the greenhouse gases such as N2O18.
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There  exist  several  categories  of  time-series  analysis.  These  are  based  on:  i)  previous

knowledge (such as curve fitting19 and classification20,21), ii) subsetting (e.g. segmentation22),

iii) clustering (e.g. based on various metrics such as Euclidean Distance23 or Dynamic Time

Warping24)  iv)  prediction  (such  as  forecasting25 and  intervention  analysis26),  and  v)

decomposition (e.g. Singular Value Decomposition - SVD27). The prediction of future states

of ecological communities and their interplay with the environment have been successfully

tackled in  the case of available  interaction  models and/or  limited  number of species28,29.

However,   predictions  of  microbial  metabolic  behaviour  are  rendered  challenging  for

naturally occurring microbial ecosystems as well as industrially-relevant ones, such as in

BWWTPs.  In  this  context,  metagenomics  (MG)30,31,  metatranscriptomics  (MT)32 and

metaproteomics (MP)33 enable the establishment of sample-specific reference databases that

simultaneously  resolve  both  compositional  and  functional  aspects  of  the  system.  When

dealing  with  complex  and  uncharacterised  microbial  systems,  far  from  lab-scale

experiments,  empirical  modelling  can enable efficient  representation  and forecasting.  To

achieve this we foresee a combination of strategies to extract all the temporal information in

an  agnostic  manner,  such  as  through  SVD,  and  to  perform  forecasting  by  explicitly

computing the temporal cycles and link those patterns directly to the explanatory variables.

SVD can decompose a matrix in two separated matrices of eigenvectors and a vector of

eigenvalues. When applied to gene abundance (or expression) data over time, one of the

matrices is interpreted as the set of temporal patterns underlying the data and the other as the

“loadings”  (i.e.  how  much  each  individual  gene  is  contributing  to  each  pattern).  The

seasonal  version  of  the  forecasting  method  AutoRegressive  Integrated  Moving Average

(ARIMA)  computes  cyclical  (seasonality),  autoregressive  (temporal  self-dependence),

differencing (difference between consecutive time points) and moving-average (averaging

of consecutive time points) components of a time-series34. It thereby offers a very flexible

framework for time-series modelling34.

We present a general analytical framework which is capable of exploiting the richness of

temporal  multi-layered  meta-omics  data  in  the  context  of  microbial  communities.  We

demonstrate  its  power  through the  analysis  of  a  Lipid  Accumulating  Organisms (LAO)

surface  community  (LAO)  from  an  anaerobic  tank  of  the  BWWTP  in  Schifflange

(Luxembourg).  The sampling spans more than one year with 51 samples collected from

March 2011 to May 2012 from which we co-extracted the macrobiomolecules and analysed

the derived MG, MT and MP datasets35 alongside the physicochemical factors measured at
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the site.  We reconstructed the MG structure of the community,  alongside its  taxonomy,

genetic  potential,  transcript  and  protein  levels.  We  employed  SVD  to  extract  relevant

temporal  patterns,  which  were  then  clustered  into  17  fundamental  signals.  Those  were

integrated with collected environmental parameters to build an ARIMA model, augmented

with  seasonal  components,  which  could  explain  the  observed  signals.  Multiple  models

(ARIMA, prophet36 and NNETAR neural networks model37) were trained to forecast the

following five years'  signals.  Validation  was conducted using future time points,  i.e.  21

samples covering the months of June for the years 2012-2016. This allowed us to correctly

predict the gene abundance and expression of the populations in the community.

Results and Discussion

Functional and genetic characterization of LAO

From the experimental period between 2011-03-21 and 2012-05-0338 we obtained 51 weekly

samples,  that  were  submitted  to  multi-omic  analyses  (MG,  MT and  MP)  and  analysed

individually  to  obtain  51  genomic  assemblies,  collections  of  metagenome-assembled

genomes (MAGs), plasmids, viruses, unbinned prokaryotic chromosomal contigs and the

corresponding gene expression at the transcriptional and proteomic levels. A week is the In

order to form coherent sets spanning the whole time-series, we individually clustered the

bins (prokaryotic and eukaryotic) and the contigs (viral, plasmid and unbinned) according to

their sequence (see  methods), which led to a total of 144 representative MAGs (rMAGs)

and 1,681,736, representative contigs (rContigs), yielding 4,711,952 Open Reading Frames

(ORFs) (Supplementary Table 1). A KEGG Orthology group (KO term) was assigned to

55% of the total retrieved ORFs, whilst taxonomic affiliations were assigned to 38.5%. The

number of ORF copies as well as their detected gene expression and protein abundances

were determined over the extended dataset (see  methods). We found on average 2.2×106

(s.d. 4.8×105) ORFs, 9.1×105 (s.d. 1.7×105) transcripts and 2.4×105 (s.d. 2.5×104) protein

groups per sample. However, the vast majority of the genes were not found to be expressed

over the entire dataset or were only detected in a few samples, with a maximum of 16.8×106

ORFs detected in one sample. This suggests that a significant fraction of the gene pool in

LAO  is  not  specifically  required  for  community  function  but  rather  their  cumulative

functional  effort  may be  compartmentalised,  fitting  the  previous  results  from Roume et

al.39 showing how a large portion of the community is redundant, and only few functions are
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keystone. Read recruitment (on the ORFs) per sample was on average 59% (s.d. 9%) for the

MG, 82% (s.d. 3%) for the MT, whilst the peptide recruitment was 27% (s.d. 4%).

The rMAGs spanned the expected phyla of the BWWTP community, and included member

of the Actinobacteria, Bacteroidetes, Chlorobi, Fusobacteria, Nitrospirae, Proteobacteria and

Spirochetes with the addition of the  Candidatus  Gracilibacteria  (Figure 1a).  On a more

detailed taxonomic level,  we were able to identify three strains of  M. parvicella and 17

strains of Moraxella spp. At no point over the course of the time series did a single rMAG

largely dominate the community, but the combined populations of the genera Microthrix and

Moraxella exhibited  a  percentage  abundance  with  medians  of  15.9%  and  3.6%,

respectively38. The majority of the contigs were not affiliated to defined MAGs (Figure 1b),

and are likely coming from incomplete genomes and alternative regions of the rMAGs, thus

encapsulating the within-population diversity of the LAO community.
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Figure  1.  Diversity  and quality  of  the  rMAGs and  their  representativeness  in  the  meta-omics  dataset.  a. The

phylogenetic tree of the rMAGs in LAO (generated using gtdb-tk 40) contains the 125 bacterial rMAGs in the system. The

heatmap ring contains the CheckM quality measures per rMAG (completeness, contamination and MAG -originally strain-
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heterogeneity), which were filtered to be at least 75% complete and at a maximum 25% contaminated (median: 2%).  The

violin plots contain the time-averaged (train time series) depth profiles over the contigs forming the rMAG. The two

sections of the tree  noted as  * and ** highlight  the strains of  M. parvicella and  Moraxella sp.,  respectively.  b. The

cumulative length of the contigs (longer than 1000nt, see  Methods) for the 25 most abundant phyla displayed for the

rMAGs and unbinned contigs.

The temporal signals underlying the microbial community

Considering that the information necessary to forecast the community dynamics and linked

gene expression may be most represented in any biological (e.g. taxonomical or functional

representation) or environmental data layer, we decided to include multiple layers in our

analysis.  Regarding  the  microbial  community  we  explored  multiple  taxonomic  and

functional  levels  at  once  and summarised  their  temporal  characteristics.  Thus,  the three

quantification  matrices  (MG,  MT and  MP)  were  used  to  compute  “summary”  matrices

according to the ORFs’ descriptors. Hence we computed one matrix per omic layer for the

six formed taxonomic descriptors (Phylum, Class, Order, Family, Genus and Species) and

two functional ones (KO terms and pathways). The resulting 27 matrices (3 original and 24

summary) were used to compute the system’s eigengenes (EGs) i.e. the independent patterns

underlying the data and their potential time dependency27. In previous works, the first EG in

a  time-series  has  been  demonstrated  to  represent  the  “steady  state”  gene  expression,

encapsulating the largest explained variance (EV), and was removed to perform the time-

series analysis27. Indeed, the first EG showed the largest variance explained (around 15% in

all the datasets), therefore we excluded it from the subsequent analysis. We screened the

subsequent EGs for time-dependency (see Methods) selecting a set of 210 EGs and assessed

how much of the data variation they explained beyond the first EG (Supplementary Figure

4).

Considering that the EGs of each matrix  are linearly independent (i.e.  they do not have

redundant information) for each matrix, we expected some level of redundancy by using

different  types  and  levels  of  summarising  the  information.  In  order  to  reduce  this

redundancy and bring together the same temporal behaviours, we clustered the set of 210

EGs into 17 representative EGs (see  Methods). These are hereafter referred to as signals

(S1-17)  and shown in  Figure  2a.  We assumed  that  the  17  signals  were  not  redundant

because they were different enough to not cluster together. Each cluster contained multiple

EGs with their associated EV (Supplementary Figure 5) and we associated the maximum
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EV of each cluster to its respective signal. In total, signals S1-17 accounted for 91.1% of the

EV in the system (whilst  the leftover  8.9% represented noise) and covered all  temporal

information in the training set.

The  17  representative  signals  (S1-17)  were  modelled  using  all  the  non-collinear

environmental parameters as variables (see methods) as shown in Figure 2b. Moreover, the

model  includes  predictors  derived  from  the  ARIMA,  such  as  the  intercept  (the  basal

abundance/expression),  autoregression  (the  time-lagged self  dependence)  and sine/cosine

(the  cyclical  behaviours,  including  seasonality),  which  explain  the  microbial  process

through its mathematical components. In summary, we include self-dependent, cyclical and

environmental interactions to explain community dynamics. As seen in Figure 2b, all the

signals  are  generally  explained  more  via  the  mathematical  variables  rather  than  the

environmental ones. This is partially due to the fact that some of the environmental variables

have a seasonal trend too (e.g. temperature) and their impact will be significant in the model

if their values explain more than the seasonality (i.e. having a fine-tuning effect). Therefore,

the cyclical environmental patterns, such as temperature and water inflow, end up being

factored into the cyclical part of the model whilst only the residual effect is assessed by the

properly named variable (e.g. temperature). Moreover, it is interesting to notice how little of

the  environmental  variables  automatically  collected  by  the  BWWTP  (variable  blocks

“Inflow”,  “V1” and “V2”) are  significant  to  the  model  compared to  the  ones  collected

manually (Figure 2b). This may be explained by heterogeneous spatial effects, in which the

surface of the tank is a patchwork of neighbouring habitats with discrepancies in parameter

values, due to the viscosity of the foam. A similar microenvironment has been observed for

flocks in BWWTP where nitrification was shown to happen in the outer 125 μm of them of the

aggregates41.

The large importance of a “ground state” in BWWTP is linked to the need for robustness of

a  system  that  is  operated  primarily  for  public  health  purposes  that  should  be  hardly

perturbed during parameter-controlled  operations.  Furthermore,  it  has  been shown in  an

activated sludge population,  sampled monthly over nine years,  that only one out of five

microbiome clusters clearly oscillated with the seasons and reached a peak abundance of

22.3% in the community14.
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Figure 2. Eigengene modelling using ARIMA augmented with environmental parameters and Fourier terms.  a. The

signals S1-17 encapsulate the time-dependent dynamics underlying the microbial community. The scale of the y-axis is

dimensionless  as  the  eigenvectors.  b. The  S1-17  are  explained  as  ARIMA  processes  under  the  influence  of  the

environmental variables. The five blocks of explanatory variables are: Model (ARIMA components), Manual (manually

collected environmental variables, directly on the sampling location), Inflow (inflow stream of wastewater in the plant), V1

(first anaerobic tank in the plant), and V2 (second anaerobic tank  in the plant).  Every circle represents a significant

variable (Benjamini-Hochberg adjusted p<0.05) for the corresponding signals among S1-17, the size represents the value

of the coefficient, the ring colour its sign and the fill colour the log10(p-value). c. The signals are connected by a temporal

transfer of information, suggesting a succession of ecological events.

The temporal domino of ecological events in LAO

Even if the signals S1-17 are linearly independent from one another, we hypothesised that

there might be some links through time among them. These links might coalesce the system

into cliques of temporally concatenated ecological events which follow each other in an

ordered sequence of events (like a domino effect). We therefore used the Granger causality

test,  which  assesses  the  transfer  of  information  across  time  between  two  series  of

observations, to generate a causal network of S1-17 (p value < 0.05) with a maximum of ten
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weeks lag. The power of this representation is the amalgamation from the temporal signals,

the loadings contributing to them (Supplementary Figures 5 and 6) and the generative

model provided by ARIMA (Figure 2b) to generate ecological hypotheses to be further

tested. Incidentally, all signals but S16, demonstrated a temporal relationship with at least

another  signal,  resulting  in  a  single  network  of  causality.  We decided  to  focus  on  two

particular  cliques of nodes in the network (Figure 2c) to explore the ecological  domino

effect: C1 (including S1, S10 andS17) and C2 (S9, S4, S7, S8).

The first clique, C1, is composed of the two “crash” signals S1 and S10, which predict each

other. Indeed the peak/valley part of the signals, spanning autumn, has a similar shape but

opposite sign, whilst the first part of the signals diverge, with S10 showing a sinusoidal

shoulder in the beginning. Both signals are strongly dependent on their previous state in

time and have clear seasonal components (Figure 2b). While  S1 is positively influenced by

four variables including the oxygen concentration  as the sole environmental parameter, S10

is negatively impacted by a range of variables at the sampling site (pH, NH4, temperature,

Dry_matter  and  conductivity).  Podoviridae  and  Mimiviridae,  the  two  virus  families

identified in the system, are contributing positively and negatively, respectively, to S1 in the

MG (Supplementary Figure 6). Therefore, we infer two opposite viral mechanics involved

in the fast valley to peak switch in autumn, which corresponds also to a major transient shift

in community structure and substrate availability38. Mimiviridae target amoebas, which are

known  to  predate  on  bacteria,  indicating  a  possible  multi-step,  inter-kingdom  curbing

process. In the case of the Podoviridae, it targets Proteobacteria and Firmicutes, which are

highly abundant in the LAO (Figure 1b). The other crash signal, S10, is characterised by

the  inverted  reaction  of  the  two  most  abundant  bacterial  families  in  the  system:

Microthrixaceae and Moraxellaceae (belonging to the Proteobacteria phylum). The family

Moraxellaceae  contributes  positively to the S1 in the MG, suggesting a  takeover  of the

community,  whilst  the  gene  expression  in  members  of  the   Microthrixaceae  family  is

repressed (negatively impact on S1, positive on S10) as shown in Supplementary Figure 6.

It seems plausible that the rise in Podoviridae would be linked to the rise of its putative host

(Moraxellaceae),  to  the  expenses  of  family  Microthrixaceae.  However,  the  decrease  in

Mimiviridae could have triggered an increase in amoebas, resulting in greater predation on

the most  abundant  bacterial  family.  These events  may subsequently  drive S17,  a  signal

solely explained by a cyclic ARIMA component (Figure 2b), suggesting that the temporal

behaviours  in  the  systems  cannot  always  be  explained  by  long-term  seasonal  and
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environmental factors, but likely by the ecological interactions of the microbes involved.

More  specifically,  S17 sees  the  rise  in  abundance  or  gene  expression of  three  bacterial

families:  the  fermenting  Propionibacteriaceae,  the  polyphosphate  accumulating

Intrasporangiaceae and the autotroph Gallionellaceae. These families point to the reaction of

the foam community to the observed shift in autumn. Correspondingly, S17 represents the

emergence of lipid-independent metabolic strategies.

The second clique, C2, includes S9, S4 and S7 leading to S8. Both S4 and S8 represent

oscillatory “perturbations'' (Figure 2b, Supplementary Figure 5d). Whilst S4 is increasing

in amplitude, S8 is decreasing. Interestingly, out of the four only S8 has an autoregressive

component and S7 is missing any seasonal signal (Figure 2b). The nitrogen-associated S9

has a simple dependency on NH4 (Figure 2b) and indeed influences positively the family

Nitrosomonadaceae (Supplementary Figure 6). S7 is weakly influenced by seasonality and

has  a  relatively  strong intercept  (Figure 2b)  but  is  affected  by both  pH and NH4.  The

bacterial  taxonomic  contributions  to  S7  show  a  mixed  response  of  the  transcriptome

whereby the only positive MG association is with the viral family Mimiviridae. It is possible

that  S7  encodes  fluctuations  in  the  parameters  and  the  immediate  response  of  the

microbiome (through RNA), without a defined overarching pattern. The pair S4 and S8 are

however more intriguing, because of the counterintuitive idea that an escalating perturbation

could contribute to the resolution of another perturbation. S4 is explained solely by seasonal

components, whilst S8 also includes pH effects from both the sampling site and the inflow,

even if with opposite effects (Figure 2b). The signal S4 is negatively associated with gene

expression and protein levels, however it is positively impacted by the level of the putative

predator Nannocystaceae42.  The functional  associations  of S8 include a negative one for

porphyrin and chlorophyll  and positive ones for glycerophospholipids and simple sugars,

hinting at a switch between autotrophic and medium-dependent metabolisms in the foam

community. This seems to suggest that an interplay between the predation by the family

Nannocystaceae, supported by parameter fluctuations in pH and NH4 might lead to further

general instability in the RNA expression of the microbiome. Even more curious is how the

exacerbation of the amplitude of S4 might drive the stabilisation of  S8, according to the

idea that higher predation levels have been linked to the stability of ecosystems43.
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Figure 3. Triacylglycerol accumulation as a key metabolic community-wide trait.  a. Enzymatic reactions (with high

abundance in at least one of the omics from Shif-LAO) leading to triacylglycerol accumulation in the community. GLY:

Glycerol, Acyl-ACP: Acyl Carrier Protein, Acyl-P: Acyl phosphate, 3GP: 3-glycerol phosphate, ACAT: Acetyl-CoA, FA:

Fatty  Acid,  DAG:  Diacylglycerol,  TG:  Triacylglycerol,  PE:  phosphatidylethanolamine,  PC:  phosphatidylcholine.  The

enzyme class with KO number K22848 is responsible for the conversion of DAG in TG and, ultimately, the accumulation

of TG. b. Gene and gene product abundances for the various enzymatic groups involved in the accumulation of TG varies

in amount and taxonomic origin.  c. The gene abundance of K22484 is influenced by S9, indicating a, perhaps indirect

effect on NH4 levels.

Fatty Acid and Triacylglycerol accumulation are mostly time-independent

For a LAO community, the biosynthesis of Triacylglycerol (TG) and Fatty Acids (FA) are

crucial steps44 involving multiple enzyme classes and with several entry points (Figure 3a).

The abundant and expressed classes cover the circuit going from Acyl-Phosphate (Acyl-P)

to fatty acid (FA) as shown in Figure 3a, however none of the enzymes’ quantities are in

the top/bottom 5% of the loadings for the time-dependent EGs. It looks, in general, that the

accumulation of TG and FA is time-independent. This is consistent with the observation that

functions are mostly conserved in a BWWTP14. Interestingly K22848 is mostly encoded and

expressed by the family Moraxella which is one of the two dominant families in the system

(Figure 3b). Together with Moraxella, plasmid-encoded enzymes are also present, which

was precedently unknown to our knowledge45, and indicates that the ability to convert DAG

to TG can likely be shared between bacteria and across different taxonomic families.

Forecasting of future time points
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From the analysis of the signals identified in the training datasets it is already possible to

identify five signal groups: i) alternative basal states, e.g. two alternative stable states of

abundance/expression,  (S5,  S14);   ii)  perturbation,  i.e.  standing  wave  with  varying

amplitude  and  frequency,  (S4,  S8,  S15);  iii)  cyclical,  i.e.  standing  wave  with  constant

amplitude  and frequency,  (S6, S11, S12);  iv)  “crashes”,  i.e.  quick shift  in the state  and

reversion to basal state,  (S1, S10, S16);  v) mixed, i.e.  the other factors(Supplementary

Figure 6, panels c-f). Alternative stable states, perturbations and crashes (groups i, ii and iv)

are hard to model without observing multiple times the shift and the perturbation events,

respectively.  Additionally,  these  scenarios  may  include  permanent  shifts  into  a  new

community  equilibrium  or  transitory  signals  in  the  community  that  will  be  eventually

resolved (e.g. a viral infection). To forecast such events and based on results, systematic

information on microbial interactions would be required which is beyond the scope of this

study. The used modelling also enables us to forecast cyclical events (group iii).

The 17 signals were used to train three models (with various parameters) from the package

fable37 and the best performing model on the training set was selected for each of them (see

methods). In detail, ARIMA, prophet and neural network models (with up to four Fourier

terms for ARIMA and prophet) were trained for the S1-17 using the environmental variables

as external regressors. The 51 weeks spanning 2011-2012 data were used as a training set

and  the  model  with  the  smallest  Root  Mean  Square  Error  (RMSE)  was  selected  for

forecasting. A total of 21 new samples were collected in the month of June of the following

5 years  to  validate  the model  for the MG and MT data.  To assess the accuracy of the

forecasting, we computed the residues of the model and checked if they were consistent with

a white noise distribution. Therefore, we showed in 16 out of 17 cases that the modelling

was sufficient to reproduce the training data (Figure 4). The cases in which the modelling

was fully successful were six: S1, S2, S4, S5, S10 and S16. However, it is worth noting that

the training set for S10 was not fully captured by the model, and therefore we excluded it

from further considerations. The five correctly forecasted signals account for 22.5% of EV

and 24.7% of the EV by the complete S1-17 model. However, the most common outcome of

the validation was a good fit to the training set and an insufficient one in the testing (9 out of

17 cases), including signals from all the groups. This could be caused by two phenomena:

overfitting of the model to the training set or its insufficient size. Of particular interest is S8,

whose signal in the training set remains stable for several months including the end of the

training set,  probably indicating that the perturbation is over. S4 is strictly tied with S8
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(Figure 2b), however S4 was modelled and predicted correctly, suggesting that a new cycle

is being established rather than a perturbation setting in. It is difficult to put these results in

perspective  due  to  the  lack  of  similar  studies  covering  a  similar  period  and  sampling

frequency. However, the study by Wang et al.14, which sampled the same BWWTP monthly

for nine years, showed that while five microbial clusters formed the main community, only

one of them presented a clear yearly oscillating pattern. The same cluster was present in the

BWWTP even after a bleaching event, therefore it is reasonable to assume that a fraction of

the LAO community had a similar cluster and that the signal(s) underlying it continued in

the following years.

Unexpectedly,  the correct forecasting of S1, which looked like a crash (Supplementary

Figure 5f) and was linked (among other things) to viral increase/decrease, suggests that it is

indeed  a  cycle.  We  speculate  that  a  recurrent  triangular  interaction  between  viruses,

amoebas  and  bacteria  might  be  repeated  over  time  and  lead  to  S1.  Unfortunately,  an

analogous trend seen for signal S10 was not equally well represented. Similar to S1, S16

also exhibited a behaviour expected from a system crash. However, the forecasting and the

testing hinted at a cyclical occurrence, hence what appeared like a crash is predicted to be

constitutive  and  repeated  behaviour.  Another  similarity  with  S1  is  that  viral  families

impacted  S16,  i.e.  Mimiviriade  (positively  and  negatively  in  the  MG)  and  Podoviridae

(positively  in  the  MP).  Signal  S5 showed a  sharp  upward movement  in  relation  to  the

general trend, before starting to dip toward the end of the time-series. Well known bacteria

involved in bulking such as Moraxellaceae and Gordoniaceae have loadings contributing

toward S5, hinting to  a quick jolt  in  thickening of the foam in Summer and an overall

cyclical effect that can be forecasted over time.
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Figure 4. Forecasting of the signals. The 17 signals are predicted for the years 2011-2016 and compared with the data

from June for those years. The green and red dots represent the training and test data respectively; the solid line depicts the

median of the prediction whilst the shaded area represents the 95% confidence interval. The green and red boxplot on the

right  of  every  box  depict  the  distributions  of  the  model  residuals  from the  training  and  the  test  sets,  respectively.

Corresponding scales are provided  on the right y-axis. The residue displacement from the null distribution was assessed by

a Wilcoxon two-sided test. The star on top of the boxplot indicates a statistical difference (BY corrected p value < 0.01)

between the mean of the residual distribution and 0, indicating an incorrect/incomplete modelling.

Forecasting gene abundance and expression

Following the forecasting of the signals, we decided to try to reconstruct the samples of the

following years. The signals harbour (almost) all the temporal information but they need to

be weighted again to re-write the LAO samples according to them. Therefore, we re-wrote

the abundance and gene expression of the microbial families as well as reactions (KO term

groups) and pathways in the terms of the S1-17 using a linear model. We then reconstructed

those matrices for the test sets using the S1-17 forecastings and the weights of the models as

well as the intercepts and compared the reconstructed values with the original ones for each

sample (Supplementary Figure 10). The comparisons show a range of results including

samples  that  were  predicted  correctly  (data  points  arranged  in  a  narrow diagonal  line),

samples with poor predictions (unordered distribution of the data points) and samples with

an unexpected inverse relationship with the prediction (descending diagonal line).  When

taking  into  account  the  explanatory  variables  in  the  ARIMA  modelling  we  already

hypothesised a micro-environmental effect at play in the foam, making it a composition of
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areas with (slightly) different environmental values. We now extend that hypothesis to the

sampling unit itself (the foam “islet”, see  Methods), which might have individual genetic

potential and gene expression characteristics imputable to the process of foam formation,

permanence and stability. We therefore assume that the islet variability, compounded with

the temporal evolution of the system, has ultimately an impact on the sample. Intuitively, if

the foam islets  were composed of the same genetic  makeup but subject  to (even small)

different  environmental  conditions,  one  would  expect  gene  abundances  to  be  relatively

stable yet gene expression might change. Instead, observing the coherent response between

MG and MT to the reconstructed samples from Supplementary Figure 10,  it is apparent

that  the  genetic  makeup  of  the  islets  changes  from week to week and gene  expression

changes accordingly to this alteration. We assume that our modelling creates a “smoother”

representation of the data, necessarily averaging the observed sample to sample variability.

This can be imputable to the SVD step of the modelling, which isolates “high level” patterns

that harbour lower noise than any individual ORF- or descriptor-based summarisation of the

data. Moreover, the scale of the values is often larger in the reconstructed samples than in

the test ones (Supplementary Figure 10).

To counter the islet variability, we considered the average of the measured and predicted

values over the month of June for each year and computed the coefficient of variation R2 for

each of them (Figure 2). The R2 is strikingly high (≥0.97) in all the six matrices for the first

two years  following the training set but the predictability starts decreasing from the third

year  after  the  last  sample.  This  implies  that  in  our  system (Shif-LAO) the  observation

through multi-omics data and the environmental parameters for 14 months is sufficient to

build a  reliable  predictive  model.  Moreover,  with this  model  and the monitoring  of  the

environmental  parameters,  it  is  possible  to  correctly  chart  the  community  structure  and

function at any given point within the two years following the sampling.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.19.512887doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512887
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5. Reconstruction of the June months 2012-2016. The test samples were reconstructed using the 17 signals and

their weights estimated through linear regressions on the training set. The reconstructed matrices are based on MG and MT

data summarising taxonomic families, reactions and pathways. The coefficient of determination R 2 is reported for each

panel with a higher coefficient demonstrating a more accurate prediction.

Conclusions

We present the temporal reconstruction of the surface microbial community of a BWWTP

over a year and a half of weekly sampling. The gene abundance and expression show 17

distinct and linearly independent signals (S1-17) across time (Figure 2a), many of which

were  explained  by  the  physicochemical  parameters  and  the  mathematical  components

describing  self-dependence  and  seasonality  (Figure  2c).  The  signals  were  tied  in  a

“temporal  domino”  (Figure  2b),  from  which  we  selected  two  cliques  to  successfully
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describe: the “autumn crash” (C1) and an oscillatory perturbation (C2). The models built on

the S1-17 signals and paired with the environmental parameters, were subsequently used to

forecast  the  next  five  years  of  the  LAO  community.  We  demonstrate  that  five  of  the

forecasted signals  (S1, S2, S4,  S5 and S16) are  indeed validated  by the future samples

(Figure 4)  and cover  some interesting  aspects  of  the  BWWTP surface  community  like

Nitrogen metabolism (S4) and viral interplay (S1 and S16), as well as well-known foam-

related dynamics  (S5). Importantly,  when rebuilding the gene abundance and expression

data at the levels of taxonomic families, reactions and pathways and extrapolating to  the

future samples (June 2012-2016) the results over the averaged month of June were near

perfect  for  the  first  two  years  after  sampling  (R2≥0.97).  However,  a  clear  fading  was

apparent starting from the third year (Figure 5).

Overall, the present approach covers the vast majority of time-dependent information in the

system. It furthermore enables us to describe a complex community with its behaviour in a

number of temporal patterns which is easy for a human to interpret (in our case 17 signals)

and  link  these  to  their  underlying  generative  processes,  as  well  as  the  environmental

parameters,  taxa  and  functions  supported  by  them.  Furthermore,  the  method  allows  to

reliably forecast these fundamental signals that represent a seasonality and temporal span

(more than one year, hence more than one expected full cycle of the system), indicating that

the  time-  and  environment-dependent  components  can  explain  the  community  during

regular WWTP operations. We hope that further work, especially the sampling the BWWTP

at higher time frequencies (e.g. hours) and/or for longer periods (multi-annual training sets),

could be integrated for a more detailed systemic description and increased ability to forecast

in order to cover those phenomena that our work falls short of. Finally, we infer that there

are  environmental  drivers  in  the  macroscopic  composition  of  the  LAO  community

behaviour and that we are able to correctly reconstruct the samples from 2 years in the

future but that the foam presents a high islet variation which is beyond the predictability of

this method.

Data and code availability

The generated MG and MT reads (FASTQ) files, as well as the previously produced data,

are available as NCBI BioProject PRJNA230567. The MP data from the PRIDE repository

with accession number PXD01365538.
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The meta-omics  pipeline  IMP v3.046  is  maintained  and developed at  the  GitLab page:

https://git-r3lab.uni.lu/IMP/imp3.  The  code  used  in  the  analysis  is  available  at

https://github.com/fdelogu/microforecast,  whilst  the  data  required  to  start  the  analysis  is

available on Zeonodo with the doi 10.5281/zenodo.7225349.

Materials and Methods

Sampling and preprocessing

Floating LAO biomass was sampled from the air–water interface of the anoxic activated

sludge tank at the Schifflange wastewater treatment plant (Esch-sur-Alzette, Luxembourg;

49130048.2900N; 61104.5300E) in the form of a single islet (examples illustrated in Figure

2 from Roume et al.39). The sampling frequency - weekly- was chosen as it is the generation

time of the activated sludge in the BWWTP (the average time it remains in the system) and

the average doubling time of the dominant Microthrix population47. For each sampling date,

indicated as dates in the format YYYY-MM-DD, one entire ‘islet’ was sampled using a levy

cane of 500 ml. Samples were quickly homogenised and collected in 50 ml sterile Falcon

tubes and then immediately flash-frozen by immersion in liquid nitrogen and stored at -80°C

to guarantee optimal sample integrity and quality.

For the 51 time points of the training set (2011-03-21 to 2012-05-03), were treated in 2012

as previously described38:  200mg were subsampled from the collected islet using a sterile

metal spatula while at all times guaranteeing that the samples remained in the frozen state

and  used  for  subsequent  biomolecular  extraction  according  to  previously  published

procedure (using the Qiagen AllPrep DNA/RNA/Protein Mini kit-based method on “LAO-

enriched mixed microbial community”35).

Additional  concomitant  biomolecular  extractions  were  applied  to  a  total  of  21  samples

collected  during  the  month  of  June  from  2012  to  2016,  and  extracted  in  a  separate

experiment  in  2018.  The  sample  pre-processing  protocol  has  been  carried  out  on  a

customised  robotic  system owned  by the  lab  (Beckman-Coulter_Platform Biomek  4000

NXP Span8 Gripper) following the same protocol as for the training set sample extraction

described  above with  few differences.  The  biomolecular  extraction  was  then  performed

using the commercial AllPrep DNA/RNA/Protein Mini Kit (Qiagen-80004), conducted on a

customised  robotic  system  owned  by  the  lab  (Tecan-
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LU_UNILU_EWS_EXTRACTION_EU-0908-  Freedom  EVO  200).  A  RNase  treatment

followed by DNA precipitation was carried out on the DNA and the RNA was purified  by

using the commercial kits Zymo RNA Clean&Concentrator-5 (Ref: R1013). RNA quality

was assessed as in the previous study for the same environment39.

High-throughput meta-omics

400 ng of DNA was sheared using NGS Bioruptor (Diogenode, UCD300) with 30s ON and

30s OFF for 10 cycles. DNA libraries were prepared using TruSeq Nano DNA kit (Illumina,

FC-121-4002) using standard protocol with 8 PCR cycles. The libraries were prepared for

350bp  average  insert  size.  1µg  of  RNA  was  rRNA  depleted  using  the  RiboZero  kit

(Illumina,  MRZB12424).  rRNA  depleted  samples  were  further  processed  and  prepared

using  TruSeq  Stranded  mRNA  library  preparation  kit  (Illumina,  RS-122-2101).  The

fragmentation time was reduced to 3min. The samples were amplified for 8 PCR cycles. The

prepared libraries were quantified using Qubit (ThermoFischer) and quality checked using

Bianaoyzer  2100 (Agilent).  Sequencing was  performed on NexSeq500 instrument  using

2x150bp read length at LCSB sequencing platform (RRID SCR_021931).

Collection of environmental variables

The environmental variables were collected on site by the researcher(s) whilst they were

performing the sampling, which include: dry matter, phosphate, nitrate, ammonium, oxygen,

conductivity,  pH,  temperature  and  oxygen  (Supplementary  Table  4)  following  the

previously established protocol38.  The other variables  were retrieved from the automated

data collection routine of the Schifflange BWWTP, which measures online these values and

aggregate  them as  2h  average  starting  at  1:00  am.  Those  recordings  include  the  same

variables for different parts of the plant (inflow, both vats, outflow) with the addition of

other measurements such as the in/out flow volume. For simplicity, we used exclusively the

variable pertaining to the inflow, both vats and outflow in this study (Supplementary Table

5). The Schifflange plant is depicted in  https://sivec.lu/installation/station-depuration/ with

the  various  components  named in  german.  The  variables  were  screened for  collinearity

(Supplementary Figure 2) using a Pearson Correlation Coefficient threshold of 0.7. For

each cluster of correlated variables a single one was selected, resulting in 15 variables used

from the 59 initial ones. The variables Oxygen_manual, Dry_matter, NH4.N, Vat1_NH4.N,

Vat2_NH4.N were transformed using the square root function.
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Co-assembly of metagenomics and metatranscriptomics reads

All the samples from the training and the test  datasets  followed the same bioinformatic

pipeline.  Sample-wise preprocessing of the MG and MT data was performed using IMP

v3.046 (https://git-r3lab.uni.lu/IMP/imp3) with custom parameters, i.e. i) Illumina Truseq2

adapters were trimmed, ii) the step involving the filtering of reads of human origin step was

omitted for the preprocessing. The reads were corrected using BayesHammer48 per sample,

per omic. The resulting MG and MT reads were assembled with metaSPAdes v3.13.149 and

rnaSPAdes v3.13.150 respectively. The MG and MT reads of each sample were re-assembled

together  using  the  contigs  and  “highly  filtered”  transcripts  from the  first  assemblies  as

trusted contigs.

Contig sorting into biological subsets

The contigs longer than 1000 nt from each sample were retained and were sorted into four

subsets: eukaryotes, plasmids, viruses and chromosomal prokaryotes. First the contigs were

screened for eukaryotes using EukRep51; the resulting non-eukaryotic contigs were searched

for plasmidial  sequences with Plasflow52 and cbar53 as well  as for viral  sequences using

virsorter  (category  1  and  2)54 and  deepvirfinder55.  A  contig  was  considered  viral  or

plasmidial if both tools agreed in the prediction, all the leftover sequences were considered

chromosomal  prokaryotic.  Later  some  contigs  of  the  latter  group  were  moved  to  the

eukaryotic (see the Taxonomic annotation section).

Binning and clustering

The chromosomal prokaryotic subsets of each sample were binned using IMP v3.046 with

MaxBin56,  MetaBAT57,  binny58 plus  a  refinement  step  with  dastool.  The  resulting  bins

dereplicated along the entire time series with dRep59 to create representative metagenome

assembled genomes (rMAGs). Similarly, the eukaryotic subsets were binned with MetaBat60

and dereplicated using dRep59 without genome quality assessment resulting in rMAGs. All

the  plasmidial,  viral  and  the  unbinned  contigs  from  the  eukaryotic  and  chromosomal

prokaryotic subsets were clustered using CD-HIT61 on each of those subsets. We refer to the

subset of the clustered unbinned contigs as representative contigs (rContigs). The collection

of the rMAGs and the rContigs constitute the representative database (rDB) of the system.

Taxonomic and functional annotation
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The  rMAGs  and  the  rContigs  were  annotated  taxonomically  using  CAT  and

BAT62 respectively. The ORFs were predicted from the rDB using IMP v3.046 and annotated

using Mantis v1.0263 with the heuristic approach and using all the databases. Subsequently

only the entries with KO terms assigned by kofam were retained for analysis.

MG and MT quantification and filtering

The filtered MG and MT reads were aligned to the ORF reference set using bwa64 and sorted

using samtools65. The resulting sorted bam files were processed using bam2hits66, and the

output split with a maximum number of 100’000 ORFs per subset, whilst respecting the

bam2hits read groups. Each subset was quantified with mmseq66 and mmcollapse67, then the

quantifications per sample were the-normalized form FPKM, merged and re-normalized to

FPKM. Values of gene abundance and expression inferior to 10-7 were considered equal to 0

and ORFs and transcripts  that were not present in at  least  20% of the training set were

discarded from further analysis.

MP quantification and filtering

Raw  MP  data  were  retrieved  from  the  PRIDE  repository  with  accession  number

PXD01365538, where the samples were processed as described in Muller et al.47, and we re-

analyse them. Supplementary Figure 10The complete set of predicted ORFs was subsetted

to  obtain  smaller  sample-specific  databases.  The  MG  alignment  files  generated  in  the

previous step were processed with featurecounts68 and all the ORFs with a count greater than

0  for  the  given  sample  were  included  in  the  appropriate  sample.  Each  sample-specific

database  was  concatenated  with  a  cRAP  database  of  contaminants

(https://thegpm.org/cRAP; downloaded in July 2019) and the human UniProtKB Reference

Proteome (UniProt Consortium, 2021), and decoys were generated by adding the reversed

sequences of all protein entries to the databases for the estimation of false discovery rates.

The  search  was  performed  using  SearchGUI  v.  3.3.2069 with  the  X!Tandem70,  MS-

GF+71 and Comet72 as search engines and the following parameters: trypsin was used as the

digestion enzyme and a maximum of two missed cleavages  was allowed.  The tolerance

levels  for  matching  to  the  database  were  10  ppm  for  MS1  and  15  ppm  for  MS2.

Carbamidomethylation of cysteine residues and oxidation of methionines were set as fixed

and variable  modifications,  respectively.  Peptides  with  length  between  7  and 60 amino

acids,  and  with  a  charge  state  composed  between  +2  and  +4  were  considered  for

identification. The results from SearchGUI were merged using PeptideShaker-1.16.4573 and
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all identifications were filtered to achieve a protein false discovery rate (FDR) of 1%. The

sample-specific peptide-spectrum matches (PSM) obtained for each analysis were then used

to  calculate  dataset-wide  protein  groups  using  the  Occam  subgroup  method  from  the

Pout2Prot  algorithm74.  The  dataset-wide  protein  group  output  was  then  submitted  to

Prophane75 with  default  parameters  to  retrieve  the  quantitative  values  using  normalised

spectral  abundance  factor  (NSAF).  Values  of  protein  abundance  inferior  to  10-3 were

considered equal to 0 and only proteins present in at least 20% of the training samples were

retained for further analysis.

Batch effect correction

The whole data analysis was conducted in R 3.4.4. Firstly we transformed the MG, MT and

MP data using the central log ratio with the function clr76 to overcome the inherent problems

of compositional data77,78. In order to estimate the batch effect between the train and test

samples,  introduced  by  the  different  experimental  procedure  (mainly  the  robotic

biomolecular extraction in the test samples and the read length), we regressed every entry in

the MG and MT matrices with a linear  model (with the function lm) as:

Y=α+β E XE+ βT XT+ε(Eq. 1);

where Y is the central log ratio (clr) transformed quantification matrix, α is the intercept of

the  model,  XE and  XT are  the  environmental  and technical  variables  (number  of  reads,

average length of reads), respectively, βE and  βT are the vectors of the environmental and

technical coefficients, respectively and ε is the randomly distributed gaussian error N(0, σ2).

The  non-normality  of  βT was  assessed  with  the  shapiro  test79 (function  shapiro.test),

sampling 10 times 5000 ORFs at random per technical variable for the MG and MT matrices

respectively and computing the scores in  Supplementary Table 2 and  3.  Therefore we

corrected the quantification matrices as:

Y ❑Y − βT XT(Eq. 2);

subtracting the estimated batch effect from the quantification matrices. The distributions of

the βT are shown in Supplementary Figure 1.

Eigengenes and their analysis

The EGs for the training set (samples from 2011-03-21 to 2012-05-03) were computed as

singular  right  eigenvectors  obtained  with  the  function  svd.  The  data  were  normalised

according to the basal expression27 computing the quantification matrices as:
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Y=UΣΣ V T(Eq. 3);

where the first element of the eigenvalues vector Σ has been replaced by 0. The EGs were

recomputed from the normalised matrices and subsequently tested using the Ljung-Box test

(Box.test),  the  augmented  Dickey-Fuller  test  (adf.test)  and  the  Kwiatkowski–Phillips–

Schmidt–Shin (kpss.tests) tests with null hypotheses “trend” and “level”. If at least two of

the four tests were passed (p<0.05 for Ljung-Box and Kwiatkowski–Phillips–Schmidt–Shin

tests; p> 0.05 for Dickey-Fuller test) the EG was considered time-dependent. The ith EG was

modelled using seasonal ARIMA modelling. Considering that the training set did not span

two cycles (the hypothetical period of seasonal patterns) we added up to 4 Fourier terms to

the model as a proxy for the seasonal component.  We used the  arima function from the

package fable37 as:

EGi=arima ( X+fourier ( K ={0 − 4 }) )(Eq. 4);

where X is the matrix of the environmental variables and the Fourier term includes 0 to 4

components.  The best  model  of  the  five  was  selected  according  to  the  R2 value  of  the

models. Finally, we assessed the significance of the explanatory variables using ANOVA

(anova).

Eigengenes clustering and Granger causality network

Correlations  between  pairs  of  EGs  were  computed  with  Pearson  linear  correlation,  the

output was made absolute and the minkowski distance was computed. The clusters were

retrieved  using  the  cutreeDynamic function  (deepSplit=0,  pamRespectsDendro=FALSE,

minClusterSize=)  from  the  dynamicTreeCut  package80,  resulting  in  17  groups

(Supplementary Figure 5). From each of the 17 groups a representative EG was selected

according to the following criteria: i) MG or MT (because MP data do not exist beyond the

training set), ii) smoothest profile (minimal median of the absolute de-trended time series).

The resulting EGs are the S1-17 in Figure 2a.

The signals were tested two at the time with the Granger causality test (grangertest) from the

lmtest  package81 and  if  the  p-value  was  inferior  than  0.05 two signals  were  considered

connected. The visualisation of the network was performed with Cytoscape82.

Signal forecasting and gene abundance/expression reconstruction
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For each signal we tested ARIMA with up to four Fourier components, Prophet with up to

four seasonal components and a neural network with 10, 20 and 30 nodes in the hidden

layer. The models were scored according to their RMSE and the top three were combined

(weighted by 1-RMSE) and used as a fourteenth model, for which the RMSE was calculated

too. The best of the fourteen models was selected for each signal and used to forecast the

test  test  with the function forecast  form the fable  package and supplying environmental

parameter readings.

All the 27 matrices used to summarise the LAO community can be rewritten using a linear

combination of the 17 signals plus a basal abundance/expression (removed in the analysis).

We therefore decided to rebuild June 2012-2016 matrices  for the reaction,  pathway and

family summarisation of the gene abundance (MG) and expression (MT). We run linear

regression (lm function) using the six training set matrices for the categories above as target

variables  and the 17 signals as explanatory variables.  We then rebuild the test  matrices

multiplying the forecasted signals over the test set time with the newly calibrated betas and

adding  the  intercept  (basal  level).  The  reconstructed  samples  were  compared  with  the

original ones on an individual basis (Supplementary Figure 10) and on an average one

(Figure 4).
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