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Abstract: Background: Micropollutants in bodies of water represent many challenges. We addressed
these challenges by the application of constructed wetlands, which represent advanced treatment
technology for the removal of micropollutants from water. However, which mechanisms specifically
contribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removal
of 27 micropollutants by bioremediation. For this, macrophytes Phragmites australis, Iris pseudacorus
and Lythrum salicaria were taken from established wetlands, and a special experimental set-up was
designed. In order to better understand the impact of the rhizosphere microbiome, we determined
the microbial composition using 16S rRNA gene sequencing and investigated the role of identified
genera in the micropollutant removal of micropollutants. Moreover, we studied the colonization
of macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic rela-
tionship with plants. This symbiosis could result in increased removal of present micropollutants.
Results: We found Iris pseudacorus to be the most successful bioremediative system, as it removed
22 compounds, including persistent ones, with more than 80% efficiency. The most abundant genera
that contributed to the removal of micropollutants were Pseudomonas, Flavobacterium, Variovorax,
Methylotenera, Reyranella, Amaricoccus and Hydrogenophaga. Iris pseudacorus exhibited the highest colo-
nization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizosphere
microorganisms on the removal of micropollutants.

Keywords: arbuscular mycorrhizal fungi; bioremediation; constructed wetlands; removal of microp-
ollutants; rhizosphere microbiome

1. Introduction

With rising globalization, industrialization and the world population in general, the
use of synthetic chemical compounds continues to grow. Many of these compounds are
micropollutants (MPs); released broadly, their removal from bodies of water is an enormous
challenge [1]. This is due to the fact that current conventional wastewater treatment plants
(WWTPs) are not designed for MPs’ removal and, therefore, a high percentage of MPs
remains in the WWTPs’ effluents, which are then discharged into bodies of water [2]. MPs
cause negative effects on aquatic fauna and flora [3], induce mutagenicity [4], contribute
to antibiotic resistance [5] and, consequently, have negative impacts on human health [6].
Because of this, the European Commission (EC) decided to require mandatory monitoring
of some MPs (i.e., antibiotics, such as azithromycin, clarithromycin and erythromycin) by
all European Union (EU) member states, with the ultimate goal of preserving the ecological
and chemical status of the surface bodies by 2027 [7-9]. This also contributed to the active
research and introduction of advanced treatment technologies in the last twenty years.
Advanced oxidation processes, UV photolysis, ozonation and membrane applications
are widely used; however, these technologies have high financial requirements and are
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challenging to implement (e.g., due to the space requirements) [10-12]. According to the
principles of the 2030 agenda for sustainable development, with rising urbanization, there is
a growing demand for the presence of nature in urban islands promoting resilience [13,14].

Constructed wetlands (CWs) are a possible solution to these challenges and offer
distinct environmental advantages. CWs act as attractive biodiverse enhancements in many
urban areas [15,16] and have recently been reported as useful for MPs’ removal [17-19]. We
investigated CWs in our recent project, EmiStre (Interreg, N 013-2-03-049), where, for most
of the 27 investigated compounds, the overall removal efficiencies of vertical subsurface
flow CWs, as a post-treatment step, exceeded 90% [20]. In order to learn from this experi-
ment, a further aim has been developed to quantify the MPs’ removal mechanisms in the
studied wetlands and understand the individual contributions. These mechanisms can be
divided as follows: 1. phytoremediation by wetland macrophytes, 2. adsorption on the
soil matrix, and 3. bioremediation by microorganisms. Phytoremediation is important in
horizontal configurations but is considered negligible for subsurface flow CWs, especially
in vertical configurations where the surface exposed to sunlight is limited [21]. Phytoreme-
diation and adsorption have already been targeted in our previous studies [22]. With the
knowledge gained from phytoremediation, we could compare and improve our current
set-up and assess the efficiency of pure plants for removing MPs. During the phytoremedi-
ation experiments, the roots were immersed into a biocidal solution to exclude the presence
of microorganisms in the root zone. With this information, it is possible to develop an
innovative experimental set-up for the establishment of bioremediation and appraise the
additional contribution of the rhizosphere organisms, which we suppose to be significant,
as the rhizosphere is known to be the most reactive zone of a wetland [23]. Bioremediation
has gained increased attention in recent years, as it is a non-invasive and natural way of
eliminating MPs. There are recent studies on the application of the bioremediation of MPs
present in irrigation water. The implementation of biochar in bioremediation, which is an
effective substrate for MPs’ removal, was also in our previous applications [20,24,25]. The
aqueous environment can have bioremediation effects influenced by various factors, such
as the presence of commonly occurring MPs (e.g., bisphenol A), which enhance bacterial
growth [26] and the beneficial relationships between plants and microbes [27,28].

In order to complete the understanding of the mechanisms’ removal, the characteriza-
tion of the present microorganisms, namely bacteria and fungi, was performed. In order
to characterize the bacterial community and to determine the role of selected genera in
the studied systems, 165 rRNA gene amplicon sequencing [29] was applied to samples of
roots and soil. Wetland bacteria are known for the degradation of an expansive variety of
nutrients and inorganic and organic compounds. Most bacteria degrade broad groups of
compounds, e.g., Reyranella or Rhodobacter decompose organic matter and, therefore, play
major roles in the removal of petroleum pollutants [30]. For instance, Hydrogenophaga is a
genus of known general benzene degraders [31]. Other bacterial genera that target specific
compounds are Massilia, which decompose tris (1-chloro-2-propyl) phosphate (TCIPP) [32],
and Sphingobium, which include known diclofenac degraders [33].

Besides bacteria, we also studied arbuscular mycorrhizal fungi (AMF), which are
commonly present in wetlands [34]. The symbiotic relationship of these soil-borne fungi
with plants belongs to the most important ones on Earth (Bucking et al., 2012), as they are
found in over 80% of all plant species [35]. AMF can also enhance phytoremediation by
creating an underground network from mycelium, which acts as a bridge between plant
roots, soil and microorganisms in the rhizosphere. The hyphae of AMF can significantly
increase the access area of the plant to nutrients and contaminants. Therefore, AMF
contribute to bioremediation because they considerably increase the active root area for
the uptake of pollutants [36]. AMF provide host plants with nutrients, such as phosphorus
and nitrogen; host plants transfer 4 to 20% of photosynthetically fixed carbon to fungi. The
presence of AMF spores generally decreases with soil depth, and the spores are normally
absent below the root zone [37]. AMF colonization can be influenced by environmental
parameters, such as, (1) flooding conditions [38], (2) temperature (the colonization rate
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increases with the growth of the temperature from 10 to 30 °C) [39], (3) level of oxygen
(the decrease of colonization is between 21 and 3% of oxygen and concentration of oxygen
below 3% cases abrupt decrease of the colonization) [40], and (4) pH (the maximum spore
germination occurs between pH 6 and 8) [39]. For the contribution of the AMF to the phyto-
and bioremediative activity of wetlands, a colonization of the plant roots by the AMF has
been examined in this work.

Overall, the main aim of this work is to understand the bioremediation process and
its contribution in a CW environment to the removal of MPs. The hypotheses are (1) the
rhizosphere is the most active area in which the removal of MPs occur, and (2) fungi and
bacteria in the rhizosphere are crucial in the removal process. Thus, in order to better
understand this, we designed a new experimental set-up. Consequently, it will be possible
to: (1) evaluate the bioremediative potential of the wetland macrophytes with organisms
present in the rhizosphere for the removal of MPs; (2) characterize the available bacterial
microbiome, aiming to understand their function better; and (3) relate the MPs’ removal
of bacterial genera with the presence of AMF determined by the colonization of plant
roots. Ultimately, it will be possible to offer advice on how to enhance the potential of the
rhizosphere in the removal of MPs via CWs.

2. Materials and Methods
2.1. Design of a Bioremediation Experiment

Three common wetland macrophytes (Lythrum salicaria (A), Iris pseudacorus (B) and
Phragmites australis (C)) previously purchased at re-natur GmbH (Ruhwinkel, Germany)
were taken from an established pilot-scale CW. Our usage of the plants did not disregard any
of the legal conservation guidelines. In the CW, bentonite sand and a 15% activated biochar
admixture acted as a substrate. The wetland was tested in the WWTP Echternach (20,000 PE
equivalent capacity, Luxembourg) as a post-treatment step. When removing the plants,
the excess soil was removed, leaving just the soil present in theroot area (rhizosphere).
This was due to the preservation of the rhizosphere microbiome, which should contribute
to the removal of MPs. The samples from the rhizosphere soil, with the roots of the
macrophytes, were sampled with sterilized tools and immediately put in a liquid nitrogen
dry shipper (Voyageur—Dry Shippers (2-Plus) AIR LIQUIDE Medical GmbH, Diisseldorf,
Germany). The “systems” (plants with present rhizosphere microbiome) were placed
into special hydroponic pots (Growrilla Hydroponics, Cirig, Italy) with tap water for one
day for conditioning. The pots contained an aeration unit, which ensured the sufficient
oxygenation of the plants’ roots and constant recirculation of the liquid medium in the pot
(Figure 1).

Figure 1. Scheme of the bioremediation experiment.

After one day, the tap water was withdrawn from the pots. Then, a mixture of
27 MPs in concentrations of 1-5 ug/L (Techlab, purity >99.99%) was added to the pots.
This concentration is typical for small-to-medium sized WWTP effluents and hydroponic
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nutrients in water (15 L) (Flora Series, General Hydroponics—the detailed composition of
the nutrient solutions is available in Supplementary Materials). The list of MPs is shown in
Table 1.

Table 1. MPs studied in this work.

Application Compound CAS Number Therapeutic Group/Use
Atenolol 29122-68-7 Beta Blocker
Bezafibrate 41859-67-0 Lipid regulator
Carbamazepine 298-46-4 Psychiatric drug
Clarithromycin 81103-11-9 Antibiotic
Ciprofloxacin 85721-33-1 Antibiotic
Cyclophosphamide 50-18-0 Cytostatic
Pharmaceuticals and Diclofenac 15307-86-5 Analgesic/anti-inflammatories
metabolites Erythromycin A 114-07-8 Antibiotic
Ketoprofen 22071-15-4 Analgesic/anti-inflammatories
Lidocaine 137-58-6 Anaesthetic
Metoprolol 51384-51-1 Beta Blocker
Propranolol 525-66-6 Beta Blocker
N4-acetylsulfamethoxazole 21312-10-7 Metabolite of Sulfamethoxazole
Sulfamethoxazole 723-46-6 Antibiotic
Carbendazim 10605-21-7 Fungicide
DEET 134-62-3 Insect repellent
Diuron 330-54-1 Herbicide
Isoproturon 34123-59-6 Herbicide
Pesticides/Herbicides Terbutryn 886-50-0 Herbicide
Mecoprop (MCPP) 7085-19-0 Herbicide
Tolyltriazole 29385-43-1 Fertilizer
Glyphosate 1071-83-6 Herbicide
Aminomethylphosphonic acid (AMPA) 1066-51-9 Degradation product
Perfluorooctanesulfonic acid (PFOS) 1763-23-1 Surfactant
Fluorosurfactants Perfluorooctanoic acid (PFOA) 335-67-1 Surfactant
Corrosion inhibitor Benzotriazole 95-14-7 Corrosion inhibitor/Antiviral
Flame retardant Tris(2-chloroisopropyl)phosphate (TCPP) 13674-84-5 Flame retardant

The pots were lighted with a LED lamp for hydroponic plants, which included 96 LED
chips (32 yellow beads, 32 blue beads, and 32 red beads), and a wavelength of 380-800 nm at
36 watts (Lovebay International Limited, Bristol, England), for 12 h per day. The duration of
the experiment was 30 days, with sampling on days 0, 1, 2, 5, 7, 14, and 30 (analogous to our
phytoremediation experiment [22]). The volume of each sample was 100 mL. The samples
were, subsequently, filtered through a 0.45 um syringe (Carl Roth, GmbH, Karlsruhe,
Germany), and the content of the macronutrients and values of the general parameters
were analyzed on-site (COD, TN, NO3—, NHy+, PO4-P (Hach Lange cuvette text box),
electrical conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and
pH (multi-portable parameter meters by Xylem Analytics Germany Sales GmbH & Co. KG,
Weilheim in Oberbayern, Germany)). The concentrations of the MPs were measured at the
Luxembourg Institute of Science and Technology (LIST) [22].

2.2. Microorganisms

In order to determine the bacterial composition, samples of the plants’ roots and
the rhizosphere were taken and immediately placed in a liquid nitrogen dry shipper
(Voyageur—Dry Shippers (2-Plus) AIR LIQUIDE Medical GmbH, Diisseldorf, Germany).
Next, root and soil samples were prepared for DNA extraction at the Luxembourg Cen-
tre for Systems Biomedicine (LCSB). First, the samples were milled and homogenized
under cryogenic conditions at —196 °C (6875D Freezer/Mill® Dual-Chamber Cryogenic
Grinder SPEXSamplePrep). After homogenization, the DNA was extracted according to
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standardized procedures (DNeasy PowerLyzer PowerSoil Kit (Qiagen, Hilden, Germany)
and PowerSoil DNA Isolation Kit (MOBIO Laboratories, Inc., Berlin, Germany). The
extracted DNA was concentrated and purified. The DNA’s quality and quantity were
assessed using a nanophotometer (Nanodrop) and fluorometer (Qubit dsDNA HS Assay
Kits, Thermo Fisher Scientific, Waltham, MA, USA). Subsequently, the sample prepara-
tion, sequencing (Oxford Nanopore Technologies MinION sequencer) and data analysis,
including the taxonomic classification, were carried out by the LCSB Sequencing Platform
(RRID SCR_021931) at the University of Luxembourg using the protocols provided by the
manufacturer.

The roots were examined for the presence of AME. First, the roots (more than 100 pieces
per plant species) were cleaned under a water stream and cut into 1 cm pieces. Next,
the roots were cleaned in a 10% KOH solution [41] and stained in an ink and vinegar
solution [42]. Then, the colonization of the macrophytes’ roots by AMF, before and after
the targeted experiment, was evaluated with the help of the grid-line intersect method and
microscopical observation (LMS Leica DM1000, Diisseldorf, Germany, zoom 10 x).

3. Results
3.1. General Parameters and Macronutrients

We observed a rapid increase in the removal efficiency of the COD (chemical oxygen
demand) within the first days (Figure 2). The efficiency of system A dropped slightly
towards the end of the experiment on day 30. The efficiency of system B continued to
increase, reaching 84% on day 30 slowly. It was also the highest removal efficiency that we
observed across the three plant species studied herein.

90

T T T T T T T
I L ]
80 |- . ¢ 4
| . a 3 — A
.
oL AR ]
| [ |
= 60 | = Al
s | e B
Ssof . A-Cl
g |
L 40t i
o L
(o]
O 30} i
A
- | |
20 i
|}
10| i
1 1 1 1 1 1 1
0 5 10 15 20 25 30
T (Days)

Figure 2. COD removal via bioremediation. A = Lythrum, B = Iris, and C = Phragmites.

The values of TN (NO3— + NHy+) (160-220 mg/L) and PO, —P (38—41 mg/L), which
were monitored during the entire experiment, were in line with the recommended values
for these nutrients (100250 mg/L for TN and 30-50 mg/L for PO4—P [43]. The plants were
taken from the CW after the winter season; therefore, they had a comparably low green
biomass. During the experiment in semi-hydroponic conditions, the plants underwent a
significant increase in healthy biomass (80-100 cm of new stems for each plant and 10-30 cm
of roots for each plant). These findings suggest well-established hydroponic surroundings
and, therefore, positive prerequisites for an optimal symbiotic relationship between the
rhizosphere organisms and the plant roots, which results in a favorable environment for
the removal of MPs from the liquid solution.

During the experiment, a constant decrease in the concentration of NHy+ ions was
observed (from 25 to 3 mg/L). The concentrations of NO3— ions remained constant during
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our experiments (60-100 mg/L). Moreover, the values of DO remained stable (6.6-7.9 mg/L
corresponding to 71-85% oxygen saturation), considering that the concentration of the DO
at a saturation point of 20 °C is 9.1 mg/L [44]. These facts suggest an ongoing nitrification
process, where NHy+ is oxidized to NO3;—. This could help the removal of MPs, as many
of the nitrifying bacteria are known for their ability to degrade organic compounds [45].
However, it is not possible to confirm this hypothesis surely, as it is not clear which amount
of NO3;— is being up taken by the plants and which amount is oxidized from NHy+. The
measured values of pH and ORP during this experiment are available in the Supplementary
Materials.

3.2. Removal of Micropollutants

The ability of the studied systems to remove MPs from the liquid medium is delineated
as follows:

The most efficient system for the removal of MPs is macrophyte B, Iris, which re-
moved 22 out of 27 compounds with more than 80% efficiency. The successfully removed
compounds were atenolol, benzotriazole, bezafibrate, carbendazim, ciprofloxacin, clar-
ithromycin, cyclophosphamide, DEET, diclofenac, diuron, erythromycin, glyphosate, iso-
proturon, ketoprofen, MCPP, metoprolol, propranolol, sulfamethoxazole, and its acetyl
degradation product, TCIPP, tebutryn, and tolyltriazole. Table 2 shows a comparison of the
bioremediation removal of the compounds in the current experiments and the bioremedia-
tion experiments described in the literature.

Table 2. Removal of 22 compounds in the current study compared to achieved removals in previous
studies.

Achieved Removal in

Compound Current Study (%) Achieved Removal in Previous Studies Reference
atenolol 98.8 80% [46]
benzotriazole 93 complete removal, 'however conditioned by low [47]

concentration of the compound
bezafibrate 99.9 contribution of the biofilm to removal of 25% [48]
carbendazim 99.3 41.8% [49]
ciprofloxacin 99.5 contribution of the biofilm to removal of 22% [48]
clarithromycin 99.4 75.8-98.6% [50]
cyclophosphamide 91.8 >20% [51]
DEET 99.6 no significant removal [52]
diclofenac 99.7 97 + 4% [53]
diuron 99.7 83% [54]
erythromycin 98.3 75.8-98.6% [50]
glyphosate 99.2 82.6% [55]
isoproturon 99.6 complete removal [56]
ketoprofen 99.9 complete removal [53]
MCPP 99.5 99% [57]
metoprolol 91 60% [46]
propranolol 98.9 60% [46]
sufamethoxazole 90.5 75.8-98.6% [50]
N-acetyl-sulfamethoxazole 99.5 no information founded

TCIPP 89.9 60% [32]
terbutryn 99.6 complete removal [58]
tolyltriazole 95.7 complete removal [47]

From Table 2, it is clear that the previously mentioned experimental set-up could be
a solution for the removal of compounds such as beta-blockers, carbendazim, cyclophos-
phamide, DEET and TCIPP, which were not well-removed by bioremediation before.

Among the plants, Iris did not prove to perform the best during our phytoremediation
experiments carried out in the past, probably because it was not very well-developed. A
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comparison between the removal efficiency of Iris during the phyto- and bioremediation
experiments is shown in Figure 3.
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Figure 3. Comparison of the removal efficiency of Iris during bioremediation and fresh and adapted
Iris during phytoremediation.

The removal rate (R. r.) was calculated using the following equation: R.r.(%) = % *

100%, where co is the initial concentration of the MPs and c is the concentration on any given
day of the experiment. With microorganisms present in the rhizosphere, the remediation
system resulted in a higher MP removal than for plants without rhizosphere present.
Focusing on the performance of Iris with the presence of the rhizosphere, it is apparent that
some compounds are removed with medium-to-poor efficiency (<80%):

e AMPA, which was, notably, not removed from our CWs’ installations (Venditti et al.,
2022), is a degradation product of glyphosate that tends to retransform back to its
maternal compound [59,60].

e  Carbamazepine, which is a poorly biodegradable compound, and its metabolites can
build back to the parent compound. Therefore, removal is not assumed in conventional
WWTPs [51], while in the presented experiments, this compound was removed up
to 80%.

e  Fluorosurfactants, in this case, PFOA and PFOS, are generally persistent compounds
that tend to accumulate in the surrounding media [61] and, in the present study, were
removed up to 66% (PFOA) and 27% (PFOS).

We can demonstrate the usefulness of this removal process by providing two insights:
First, the adapted method with a continuous oxygen supply (due to aeration) reduces
stress in the rhizospheric system (anoxic conditions), and the permanent mixing of the
aqueous solution guarantees representative sampling. Therefore, the configuration and
design of the experiment represent the bioremediation process and show the importance



Sustainability 2022, 14, 3944

8 of 16

of the rhizospheric system. Nevertheless, sufficient oxygen levels seem to be essential for
the MPs’ removal in the rhizospheric system under real conditions. Additional forced
aeration and recirculation of wastewater have previously demonstrated an increase in the
aerobic capacity of the system and, thus, could be advantageous for the removal of MPs
by CWs [62,63]. Second, poorly biodegradable or persistent MPs, such as metoprolol [64]
and lidocaine [65], were removed by 91% and 84%, respectively. TCIPP, which passes
through conventional wastewater treatment [66] and persists in treatments by advanced
technologies, was removed by our approach up to 90%. The concentration profiles of all
the compounds in each system, together with the quantification limits, are available in the
Supplementary Materials.

In our previous phytoremediation experiments, Lythrum was the most efficient macro-
phyte. In the present bioremediation experiments, Lythrum exhibited the lowest MP
removal efficiencies. This is probably due to its weakened physiological status after the
winter period. A comparison of the medium efficiency of the MPs’ removal by the three
macrophyte bioremediative systems is shown in Figure 4.

Medium efficiency bioremediation

100 -

80 |-

60 |-

Medium efficiency (%)

20 -

— | -

Figure 4. Medium efficiency of MPs’ removal of the studied macrophyte systems, (A = Lythrum,
B = Iris, and C = Phragmites).

Overall, our results suggest that the role of the rhizosphere in a CW environment
could be substantially enhanced if additional aeration conditions and sufficient nutrients
are provided.

3.3. Microbial Composition

In order to better understand the rhizosphere microbiome in CWs, we studied the bac-
terial complement by sequencing the 165 rRNA gene of this microbiome. For simplification,
we focused on the most abundant 25 genera (a list of these genera is available in the Sup-
plementary Materials), which represent the majority (>68%) of the overall population. Of
these, we focused on bacteria with known potential for MPs’ removal. The total abundance
of these genera varied from 25-40%. The following figures (Figure 5) show the detailed
abundances of genera known for the removal of organic MPs in the studied samples.
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Figure 5. Abundance of the most abundant genera with known organic compound removal potential.
BPB = Bioremediation Roots Iris, BPNB = Bioremediation New Roots Iris, BPC = Bioremediation
Roots Phragmites, BPNC = Bioremediation New Roots Phragmites, BRA = Bioremediation Rhizo-
sphere Lythrum, BRB = Bioremediation Rhizosphere Iris, and BRC = Bioremediation Rhizosphere
Phragmites.

From the genera mentioned in the previous figures, the most abundant ones are shown
in Table 3.

Table 3. Relative abundance of the most common genera for organic compound removal.

Sample Pseudomonas Flavobacterium Variovorax  Methylotenera Reyranella ~ Amaricoccus  Hydrogenophaga
%

BPB 9.39 222 0 1.56 1.41 1.84 32

BPNB 1.48 0 293 7.96 1.38 0 0
BPC 4.47 2.03 2.36 13.01 1.02 0 0

BPNC 1.09 0 9.39 6.86 1.54 0 0
BRA 6.22 0 0 1.62 1.31 6.44 1.26
BRB 17.43 2.61 0 1.34 1.26 0 7.58
BRC 9.42 2.26 0 1.5 1.41 1.82 3.19

We could not identify major trends for the abundance of the genera in the studied
samples (Table 3). For example, Flavobacterium is present in the rhizosphere and root
samples of Iris and Phragmites but not in the rhizosphere of Lythrum, and it is not present in
the new roots. Hydrogenophaga, similar to Amaricoccus, are genera present in most of the
rhizosphere samples but only in one root sample (Iris). These genera can remove a broad
range of organic compounds. Pseudomonas is a well-known genus for organic and inorganic
pollutants’ removal and is commonly present in CWs [67], e.g., herbicides, antibiotics and
the anticonvulsant carbamazepine [55,68,69]. Amaricoccus, similar to methylotrophs (in this
case, Methylotenera), is a genus that uses organic compounds as a carbon source [70]. Some
genera are targeting specific compounds; for example, halogenated compounds (diclofenac,
TCIPP), as it is in the case of Variovorax and Flavobacterium [71,72].

3.4. Colonization of the Roots by AMF

To broaden the knowledge about a plant roots” microbiome, we observed the presence
of the AMF complement by quantifying their colonization in the plant roots using micro-
scopic techniques. AMF belong to endomycorrhizae, meaning that the hyphae penetrate
individual root cells of the plant [73]. Thanks to this knowledge and to comparisons with
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previously made photographs of AMF, it is possible to detect the fungus’ nature successfully
(Figure 6).

Figure 6. AMF in the plant cells of Iris (both photos represent the plant cells of Iris). The AMF appear
as the very dark, even black spots within the plant cells.

The observed colonization rate of the roots by AMF is shown in the Table 4.

Table 4. Colonization of the plants’ roots by AMF in the studied root samples.

Sample Colonization by AMF (%)
Phragmites before bior. exp. 34
Iris before bior. exp. 56
Lythrum before bior. exp. 36
Phragmites after bior. exp. 10
Iris after bior. exp. 15
Lythrum after bior. exp. 10
Phragmites after bior. exp. new roots 0
Iris after bior. exp. new roots 0
Lythrum after bior. exp. new roots 0

We found that Iris consistently exhibited the highest AMF colonization rates. This
could be due to Iris having a very dense root system compared to the other plants. Unfortu-
nately, the roots suffered some damage during removal from the soil in the semi-hydroponic
installation, which resulted, together with the majority of the soil absent, in an overall
decreased AMF colonization. During the bioremediation experiment, we also observed
fresh root growth. These examined roots showed no evidence of AMF, which may be
explained by the fact that these fungi are soil-borne [74-76]. As the roots were not further
investigated, the symbiosis between the fungi and the plants was not evaluated further in
the present work. Thus, a possible target of future studies could be a deeper analysis of the
roots and their associated AMF with possible extraction of the accumulated MPs.

The results acquired in this study indicated that the aforementioned genera are able to
contribute to the removal of MPs when the plant roots for the symbiotic AMF are enriched,
which is assumed to improve the phytoremediative potential of the plants. This confirms
our hypothesis that rhizosphere in CWs has positive impact on the removal of MPs.

4. Conclusions

In this study, experiments determining the bioremediative activity of the studied
systems for the removal of MPs were carried out. Next, the rhizosphere microbiome was
identified, and the genera responsible for the removal of organic MPs were characterized.
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Additionally, the colonization of the plant roots by AMF, which enhanced the removal of
the MPs, was determined. The conclusions of the present research are as follows:

e  Compared to our previous phytoremediation experiments, the currently described
bioremediation experiment in semi-hydroponic conditions showed improved MP re-
moval, which we believe was due to the additional aeration, recirculation of the liquid
medium, and commercially bought hydroponic solutions, which favor the growth
conditions of the plants and, therefore, enhance the development of the rhizosphere
and consequent removal of MPs.

e  The most efficient bioremediative system was the system with Iris pseudacorus, which
removed 22 out of 27 of the MPs with more than 80% efficiency.

e  Compounds, which are not well-removed in other bioremediation experiments, were
removed here, with more than 90% efficiency (e.g., beta-blockers, carbendazim, cy-
clophosphamide, and DEET).

o  Generally persistent compounds were removed with high efficiency (metoprolol up to
91%, lidocaine up to 84%, and TCIPP up to 90%).

e  Possible ongoing nitrification likely enhanced the bioremediative process, as many of
the MPs are degraded by nitrifying bacteria.

o Lythrum salicaria had the lowest efficiency for removing MPs (contrary to previous
phytoremediation experiments). This is probably due to its weak physiological status
after the winter season.

e Pseudomonas, Flavobacterium, Variovorax, Methylotenera, Reyranella, Amaricoccus and
Hydrogenophaga belong to genera that are known to be potential MP degraders. High
abundances of these organisms were also found in our samples.

e A colonization of the plant roots by AMF was established. This information is valuable,
as AMF contribute to phyto- and bioremediation. The macrophyte with the highest
colonization was Iris pseudacorus (56%).

These conclusions summarize the main outcomes of the discussed research. In the
present study, the optimal candidate for bioremediation was found to be Iris pseudacorus.
It showed an excellent ability to outlast the winter season without considerable loss of
its pollutant removal abilities and provided a decisive environment for its advantageous
symbiosis with AME. We believe there is much potential for further investigation of biore-
mediative systems, their associated microbiomes, and CWs.
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