104 research outputs found

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation

    Competences of Mathematics Teachers in Diagnosing Teaching Situations and Offering Feedback to Students:Specificity, Consistency and Reification of Pedagogical and Mathematical Discourses

    Get PDF
    In the study we report in this chapter, we investigate the competences of mathematics pre- and in-service teachers in diagnosing situations pertaining to mathematics teaching and in offering feedback to the students at the heart of said situations. To this aim we deploy a research design that involves engaging teachers with situation-specific tasks in which we invite participants to: solve a mathematical problem; examine a (fictional yet research-informed) solution proposed by a student in class and a (fictional yet research-informed) teacher response to the student; and, describe the approach they themselves would adopt in this classroom situation. Participants were 23 mathematics graduates enrolled in a post-graduate mathematics education programme, many already in-service teachers. They responded to a task that involved debating the identification of a tangent line at an inflection point of a cubic function through resorting to the formal definition of tangency or the function graph. Analysis of their written responses to the task revealed a great variation in the participants’ diagnosing and addressing of teaching issues – in this case involving the role of visualisation in mathematical reasoning. We describe this variation in terms of a typology of four interrelated characteristics that emerged from the data analysis: consistency between stated beliefs/knowledge and intended practice, specificity of the response to the given classroom situation, reification of pedagogical discourses, and reification of mathematical discourses. We propose that deploying the theoretical construct of these characteristics in tandem with our situation-specific task design can contribute towards the identification – as well as reflection upon and development – of mathematics teachers’ diagnostic competences in teacher education and professional development programmes
    • 

    corecore