1,539 research outputs found

    The Mg/Caā€“temperature relationship in brachiopod shells: calibrating a potential palaeoseasonality proxy

    Get PDF
    Brachiopods are long-lived, long-ranging, extant organisms, of which some groups precipitate a relatively diagenetically stable low magnesium calcite shell. Previous work has suggested that the incorporation of Mg into brachiopod calcite may be controlled by temperature (Brand et al., 2013). Here we build upon this work by using laser ablation sampling to define the intra-shell variations in two modern brachiopod species,Terebratulina retusa (Linnaeus, 1758) and Liothyrella neozelanica (Thomson, 1918). We studied three T. retusa shells collected live from the Firth of Lorne, Scotland, which witnessed annual temperature variations on the order of 7 Ā°C, in addition to four L. neozelanica shells, which were dredged from a water depth transect (168ā€“1488 m) off the north coast of New Zealand. The comparison of intra-shell Mg/Ca profiles with shell Ī“<sup>18</sup>O confirms a temperature control on brachiopod Mg/Ca and supports the use of brachiopod Mg/Ca as a palaeoseasonality indicator. Our preliminary temperature calibrations are Mg/Ca = 1.76 Ā± 0.27 e<sup>(0.16 Ā± 0.03)T</sup>, R<sup>2</sup> = 0.75, for T. retusa and Mg/Ca = 0.49 Ā± 1.27 e<sup>(0.2 Ā± 0.11)T</sup>, R<sup>2</sup> = 0.32, for L. neozelanica (errors are 95% confidence intervals)

    Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides

    Get PDF
    Incidences of non-deposition or erosion at the modern seabed and hiatuses within the pelagic caps of guyots and seamounts are evaluated along with paleo-temperature and physiographic information to speculate on the character of Late Cenozoic internal tidal waves in the upper Pacific Ocean. Drill core and seismic reflection data are used to classify sediment at the drill sites as having been either accumulating or eroding/nondepositing in the recent geological past. When those classified sites are compared against predictions of a numerical model of the modern internal tidal wave field (Simmons, 2008), the sites accumulating particles over the past few million years are found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in internal tide beams. Given the correspondence to the modern internal wave field, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from ocean chemical changes but from physical processes, such as erosion by internal tidal waves. We investigate how changing conditions such as ocean temperature and basin physiography may have affected internal tides through the Cenozoic. Allowing for subsequent rotation or uplift by plate tectonics, ancient submarine ridges among the Solomon, Bonin and Marianas Island chains may have been responsible for some sediment hiatuses at these distant guyot sites

    Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343)

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record.ā€ÆBering Sea sediments represent exceptional archives, offering the potential to study past climates and biogeochemistry at a high resolution. However, abundant hydrocarbons of microbial origin, especially along the eastern Bering Sea continental margin, can hinder the applicability of palaeoceanographic proxies based on calcareous foraminifera, due to the formation of authigenic carbonates. Nonetheless, authigenic carbonates may also bear unique opportunities to reconstruct changes in the sedimentary redox environment. Here we use a suite of visual and geochemical evidence from single-specimens of the shallow infaunal benthic foraminiferal species Elphidium batialis Saidova (1961), recovered from International Ocean Discovery Program (IODP) Site U1343 in the eastern Bering Sea, to investigate the influence of authigenic carbonates on the foraminiferal trace metal composition. Our results demonstrate that foraminiferal calcite tests act as a nucleation template for secondary carbonate precipitation, altering their geochemistry where organoclastic sulphate reduction and anaerobic oxidation of methane cause the formation of low- and high-Mg calcite, respectively. The authigenic carbonates can occur as encrusting on the outside and/or inside of foraminiferal tests, in the form of recrystallization of the test wall, or as banding along natural laminations within the foraminiferal test walls. In addition to Mg, authigenic carbonates are enriched in U/Ca, Mn/Ca, Fe/Ca, and Sr/Ca, depending on the redox environment that they were formed in. Our results demonstrate that site-specific U/Ca thresholds are a promising tool to distinguish between diagenetically altered and pristine foraminiferal samples, important for palaeoceanographic reconstructions utilising the primary foraminiferal geochemistry. Consistent with previous studies, U/Mn ratios of foraminifera at IODP Site U1343 increase according to their degree of diagenetic alteration, suggesting a potential response of authigenic U/Mn to the microbial activity in turn linked to the sedimentary redox environment.BGS University Funding Initiative Ph.D. studentshi

    Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera : aragonitic species Hoeglundina elegans

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1007, doi:10.1029/2005PA001158.Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on ā€œliveā€ and ā€œdeadā€ specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([Ī”CO3]aragonite) below 15 Ī¼mol kgāˆ’1. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 Ā± 0.002)BWT + (0.96 Ā± 0.03) and Sr/Ca = (0.060 Ā± 0.002)BWT + (1.53 Ā± 0.03) (for [Ī”CO3]aragonite > 15 Ī¼mol kgāˆ’1). The standard error associated with these equations is about Ā±1.1Ā°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.Yair Rosenthal acknowledges the support of Amtzia Genin and the Hebrew University, Forchheimer Fellowship, during his sabbatical in the Inter-University Institute in Eilat, Israel. This project has been funded by NSF Awards OCE 0220922 to Y.R. and OCE 0220776 to D.W.O. and B.K.L

    Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements

    Get PDF
    Includes bibliographical references (page 901).Differential carrier lifetime measurements were performed on index-guided oxide-confined vertical cavity surface emitting lasers operating at 980 nm. Lifetimes were extracted from laser impedance measurements at subthreshold currents, with device size as a parameter, using a simple small-signal model. The carrier lifetimes ranged from 21 ns at 9 ĀµA, to about 1 ns at a bias close to threshold. For a 6 Ɨ 6 Āµm2 oxide aperture device the threshold carrier density was nth ~ 2 Ɨ 1018cm-3. The effect of carrier diffusion was also considered. An ambipolar diffusion coefficient of D ~ 11 cm2s-1 was obtained.Work at Texas Tech is supported by BMDO (monitored by Lou Lome), DARPA, and the J. F. Maddox Foundation

    Buried refractive microlenses formed by selective oxidation of AlGaAs

    Get PDF
    Includes bibliographical references (page 1408).The authors demonstrate a novel method of fabricating buried refractive microlenses formed by selective oxidation of AlGaAs epitaxial layers on a GaAs substrate. By appropriate tailoring of the Al mole fraction in the vertical direction, a lens-shaped oxidation shape was achieved. Performance of the microlenses formed in this way was experimentally evaluated at 980nm, and modelled theoretically

    Developing Optimized Trajectories Derived from Mission and Thermo-Structural Constraints

    Get PDF
    In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems

    Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343)

    Get PDF
    Bering Sea sediments represent exceptional archives, offering the potential to study past climates and biogeochemistry at a high resolution. However, abundant hydrocarbons of microbial origin, especially along the eastern Bering Sea continental margin, can hinder the applicability of palaeoceanographic proxies based on calcareous foraminifera, due to the formation of authigenic carbonates. Nonetheless, authigenic carbonates may also bear unique opportunities to reconstruct changes in the sedimentary redox environment. Here we use a suite of visual and geochemical evidence from single-specimens of the shallow infaunal benthic foraminiferal species Elphidium batialis Saidova (1961), recovered from International Ocean Discovery Program (IODP) Site U1343 in the eastern Bering Sea, to investigate the influence of authigenic carbonates on the foraminiferal trace metal composition. Our results demonstrate that foraminiferal calcite tests act as a nucleation template for secondary carbonate precipitation, altering their geochemistry where organoclastic sulphate reduction and anaerobic oxidation of methane cause the formation of low- and high-Mg calcite, respectively. The authigenic carbonates can occur as encrusting on the outside and/or inside of foraminiferal tests, in the form of recrystallization of the test wall, or as banding along natural laminations within the foraminiferal test walls. In addition to Mg, authigenic carbonates are enriched in U/Ca, Mn/Ca, Fe/Ca, and Sr/Ca, depending on the redox environment that they were formed in. Our results demonstrate that site-specific U/Ca thresholds are a promising tool to distinguish between diagenetically altered and pristine foraminiferal samples, important for palaeoceanographic reconstructions utilising the primary foraminiferal geochemistry. Consistent with previous studies, U/Mn ratios of foraminifera at IODP Site U1343 increase according to their degree of diagenetic alteration, suggesting a potential response of authigenic U/Mn to the microbial activity in turn linked to the sedimentary redox environment

    Sensitivity mapping for Oil Pollution Incident Response

    Get PDF

    Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition

    Get PDF
    The glaciation of Antarctica at the Eoceneā€“Oligocene transition (approx. 34 million years ago) was a major shift in the Earthā€™s climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphereā€“ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheetā€“climate simulations to properly represent and investigate feedback processes acting on these time scales
    • ā€¦
    corecore