221 research outputs found

    Modelo para estimativa de produtividade da cultura do milho no Estado do Piauí.

    Get PDF
    Modelo para Estimativa de Produtividade da Cultura do Milho no Estado do Piauí; Desenvolvimento do modelo; Conversão de CO2 em CH2 O; Correção para respiração de manutencão e crescimento; CRMCI; Correcão para interceptação de radiação solar (CRs); índice de colheita (IC); Produtividade potencial de grãos (PPgr); Balanco hídrico; Evapotranspiracão de referência; índice térmico e coeficiente empírico composto; Evapotranspiração da cultura; Capacidade de água disponível; Saldo (SI e negativo acumulado (L); Variaçao do armazenamento; Evapotranspiracao real; Deficiência hidrica; Fator de depleção de produtividade (Fd); Produtividade deplecionada de grãos (Pgrãos).bitstream/item/35900/1/Doc157.pd

    Metodologia de caracterização físico-química de lignina kraft.

    Get PDF
    A presente Metodologia descreve a aplicação otimizada das técnicas analíticas ATG, BET, 13C-RMN, DSC, FTIR, MEV-EDS, Py-GC-MS e SEC -ELSD na caracterização físico-química de uma amostra de lignina kraft, obtida de híbrido nacional de E. grandis x E. urophylla. Por meio de tais técnicas, foi possível observar as várias propriedades físico-químicas da lignina, de modo a poder avaliar a utilização da mesma como suporte de liberação lenta ou controlada de moléculas bioativas de interesse agrícola. The present Methodology describes the optimized application of the analytical techniques TGA, BET, 13C-NMR, DSC, FTIR, SEM -EDS, Py-GC-MS and SEC-ELSD in the physicochemical characterization of a kraft lignin sample obtained from E. grandis x E. urophylla hybrid plant. By means these techniques it was possible to observe the various physicochemical properties of lignin in order to be able to evaluate the use of kraft lignin as a carrier for controlled release of bioactive molecules of agricultural interest.bitstream/item/214471/1/Boletim-de-Pesquisa-e-Desenvolvimento-Metodologia-de-Caracterizac807a771o-Fi769sico-Qui769mica-de-Lignina-Kraft-2020.pd

    Carbon emissions in hydromorphic soils from an estuarine floodplain forest in the Amazon River.

    Get PDF
    Carbon dioxide (CO2) is produced only in biological activities. Understanding how soil tillage practices affect the dynamics of CO2 production is important, as these processes are influenced by the temperature and humidity conditions of the place. This paper aimed at quantifying CO2 flux in hydromorphic floodplain soils under different açai palm tree grove management strategies, correlating it with litter deposition, soil environment, and season of the year. Conducted in the city of Mazagão-AP, four areas of açai palm tree groves were selected with different types of management. During the evaluation period (October, November, and December 2012, and February, March, and April 2013), CO2 flux, soil moisture, and temperature were measured, and litter samples were collected. In addition, rainfall data for the region were also obtained. The CO2 fluxes obtained ranged from 0.37 to 28.55 μmol CO2 m-2 s-1, with a total average of 6.20 μmol CO2 m-2 s-1. In broad analysis, soil variables did not show significant correlations with CO2 emissions. A positive relationship between flux and litter and soil temperature, as well as a negative relationship with its moisture, were observed only in a few months and specific systems. A produção de dióxido de carbono (CO2) do solo de várzea está relacionada às atividades biológicas, interagindo com sua dinâmica de inundação e manejo. Compreender a forma pela qual práticas de manejo de açaizais afetam as dinâmicas da produção de CO2 é importante, pois elas podem aumentar a emissão em relação à floresta. O objetivo do trabalho foi quantificar o fluxo de CO2 do solo hidromórfico de várzea sob diferentes manejos de açaizais, analisando suas relações com a deposição de serapilheira, ambiente do solo e o período do ano. Realizado no município de Mazagão-AP, foram selecionadas quatros áreas de açaizais com diferentes tipos de manejos. Durante o período avaliado (out/2012, nov/2012, dez/2012, fev/2013, mar/2013 e abr/2013), abrangendo períodos sem inundação (verão amazônico) e com inundação (inverno), foram medidos o fluxo de CO2, umidade e temperatura do solo, e deposição de serapilheira. Além disso, também foram obtidos dados de precipitação da região. O fluxo de CO2 variou de 0,37 a 28,55 μmol CO2 m-2 s-1, com média de 6,20 μmol CO2 m-2 s-1. No geral, as variáveis do solo não apresentaram correlações significativas com a emissão de CO2. Apenas em alguns meses e em sistemas específicos, observou-se relação positiva do fluxo com a serapilheira e temperatura do solo e relação negativa com sua umidade

    Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

    Get PDF
    "© 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"[EN] This paper presents fiber Bragg grating (FBG) inscription with a pulsed 248 nm UV KrF laser in polymer optical fibers (POFs) made of different polymers, namely polymethyl methacrylate (PMMA), cyclic-olefin polymer and co-polymer, and Polycarbonate. The inscribed gratings and the corresponding inscription parameters are compared with grating inscribed in POFs made of the aforementioned materials but with the hitherto most used laser for inscription, which is a continuous wave 325 nm UV HeCd laser. Results show a reduction of the inscription time of at least 16 times. The maximum time reduction is more than 130 times. In addition, a reflectivity and a bandwidth close to or higher than the ones with the 325 nm laser were obtained. The polymer optical fiber Bragg gratings (POFBGs) inscribed with the 248 nm laser setup present high stability with small variations in their central wavelength, bandwidth, and reflectivity after 40 days. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Fundacao para Ciencia e a Tecnologia (FCT) (SFRH/BPD/109458/2015, UID/EEA/50008/2013).Marques, C.; Min, R.; Leal-Junior, A.; Antunes, P.; Fasano, A.; Woyessa, G.; Nielsen, K.... (2018). Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Optics Express. 26(2):2013-2022. https://doi.org/10.1364/OE.26.002013S20132022262Webb, D. J. (2015). Fibre Bragg grating sensors in polymer optical fibres. Measurement Science and Technology, 26(9), 092004. doi:10.1088/0957-0233/26/9/092004Prado, A. R., Leal-Junior, A. G., Marques, C., Leite, S., de Sena, G. L., Machado, L. C., … Pontes, M. J. (2017). Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Optics Express, 25(24), 30051. doi:10.1364/oe.25.030051Hu, X., Saez-Rodriguez, D., Marques, C., Bang, O., Webb, D. J., Mégret, P., & Caucheteur, C. (2015). Polarization effects in polymer FBGs: study and use for transverse force sensing. Optics Express, 23(4), 4581. doi:10.1364/oe.23.004581Pospori, A., Marques, C. A. F., Bang, O., Webb, D. J., & André, P. (2017). Polymer optical fiber Bragg grating inscription with a single UV laser pulse. Optics Express, 25(8), 9028. doi:10.1364/oe.25.009028Marques, C. A. F., Webb, D. J., & Andre, P. (2017). Polymer optical fiber sensors in human life safety. Optical Fiber Technology, 36, 144-154. doi:10.1016/j.yofte.2017.03.010Fasano, A., Woyessa, G., Janting, J., Rasmussen, H. K., & Bang, O. (2017). Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature. IEEE Photonics Technology Letters, 29(8), 687-690. doi:10.1109/lpt.2017.2678481Woyessa, G., Pedersen, J. K. M., Fasano, A., Nielsen, K., Markos, C., Rasmussen, H. K., & Bang, O. (2017). Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Optics Letters, 42(6), 1161. doi:10.1364/ol.42.001161Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., … Bang, O. (2016). Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Optical Materials Express, 6(2), 649. doi:10.1364/ome.6.000649Woyessa, G., Nielsen, K., Stefani, A., Markos, C., & Bang, O. (2016). Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Optics Express, 24(2), 1206. doi:10.1364/oe.24.001206Leal-Junior, A. G., Frizera, A., & José Pontes, M. (2018). Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors. Optics & Laser Technology, 100, 272-281. doi:10.1016/j.optlastec.2017.10.006Stefani, A., Andresen, S., Yuan, W., Herholdt-Rasmussen, N., & Bang, O. (2012). High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer. IEEE Photonics Technology Letters, 24(9), 763-765. doi:10.1109/lpt.2012.2188024Marques, C. A. F., Peng, G.-D., & Webb, D. J. (2015). Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Optics Express, 23(5), 6058. doi:10.1364/oe.23.006058Jensen, J. B., Hoiby, P. E., Emiliyanov, G., Bang, O., Pedersen, L. H., & Bjarklev, A. (2005). Selective detection of antibodies in microstructured polymer optical fibers. Optics Express, 13(15), 5883. doi:10.1364/opex.13.005883Emiliyanov, G., Høiby, P., Pedersen, L., & Bang, O. (2013). Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers. Sensors, 13(3), 3242-3251. doi:10.3390/s130303242Hassan, H. U., Janting, J., Aasmul, S., & Bang, O. (2016). Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2606580Yuan, W., Khan, L., Webb, D. J., Kalli, K., Rasmussen, H. K., Stefani, A., & Bang, O. (2011). Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Optics Express, 19(20), 19731. doi:10.1364/oe.19.019731Johnson, I. P., Yuan, W., Stefani, A., Nielsen, K., Rasmussen, H. K., Khan, L., … Bang, O. (2011). Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electronics Letters, 47(4), 271. doi:10.1049/el.2010.7347Markos, C., Stefani, A., Nielsen, K., Rasmussen, H. K., Yuan, W., & Bang, O. (2013). High-T_g TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Optics Express, 21(4), 4758. doi:10.1364/oe.21.004758Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H. K., & Bang, O. (2016). Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Optics Express, 24(2), 1253. doi:10.1364/oe.24.001253Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H. K., & Bang, O. (2016). Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Optical Materials Express, 7(1), 286. doi:10.1364/ome.7.000286Stefani, A., Nielsen, K., Rasmussen, H. K., & Bang, O. (2012). Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization. Optics Communications, 285(7), 1825-1833. doi:10.1016/j.optcom.2011.12.033Nielsen, K., Rasmussen, H. K., Adam, A. J., Planken, P. C., Bang, O., & Jepsen, P. U. (2009). Bendable, low-loss Topas fibers for the terahertz frequency range. Optics Express, 17(10), 8592. doi:10.1364/oe.17.008592Nielsen, K., Rasmussen, H. K., Jepsen, P. U., & Bang, O. (2010). Broadband terahertz fiber directional coupler. Optics Letters, 35(17), 2879. doi:10.1364/ol.35.002879Anthony, J., Leonhardt, R., Argyros, A., & Large, M. C. J. (2011). Characterization of a microstructured Zeonex terahertz fiber. Journal of the Optical Society of America B, 28(5), 1013. doi:10.1364/josab.28.001013Woyessa, G., Fasano, A., Markos, C., Rasmussen, H. K., & Bang, O. (2017). Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing. IEEE Photonics Technology Letters, 29(7), 575-578. doi:10.1109/lpt.2017.2668524Johnson, I. P., Kalli, K., & Webb, D. J. (2010). 827 nm Bragg grating sensor in multimode microstructured polymer optical fibre. Electronics Letters, 46(17), 1217. doi:10.1049/el.2010.1595Stefani, A., Wu Yuan, Markos, C., & Bang, O. (2011). Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers. IEEE Photonics Technology Letters, 23(10), 660-662. doi:10.1109/lpt.2011.2125786Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber. Optics Express, 22(15), 18807. doi:10.1364/oe.22.018807Hu, X., Pun, C.-F. J., Tam, H.-Y., Mégret, P., & Caucheteur, C. (2014). Tilted Bragg gratings in step-index polymer optical fiber. Optics Letters, 39(24), 6835. doi:10.1364/ol.39.006835Sáez-Rodríguez, D., Nielsen, K., Rasmussen, H. K., Bang, O., & Webb, D. J. (2013). Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Optics Letters, 38(19), 3769. doi:10.1364/ol.38.003769Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209Statkiewicz-Barabach, G., Kowal, D., Mergo, P., & Urbanczyk, W. (2015). Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types. Journal of Optics, 17(8), 085606. doi:10.1088/2040-8978/17/8/085606Marques, C., Pospori, A., Demirci, G., Çetinkaya, O., Gawdzik, B., Antunes, P., … Webb, D. (2017). Fast Bragg Grating Inscription in PMMA Polymer Optical Fibres: Impact of Thermal Pre-Treatment of Preforms. Sensors, 17(4), 891. doi:10.3390/s17040891Bundalo, I.-L., Nielsen, K., Markos, C., & Bang, O. (2014). Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Optics Express, 22(5), 5270. doi:10.1364/oe.22.005270Oliveira, R., Bilro, L., & Nogueira, R. (2015). Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Optics Express, 23(8), 10181. doi:10.1364/oe.23.010181Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., & Kalli, K. (2015). Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technology Letters, 27(7), 693-696. doi:10.1109/lpt.2014.2386692Theodosiou, A., Lacraz, A., Stassis, A., Koutsides, C., Komodromos, M., & Kalli, K. (2017). Plane-by-Plane Femtosecond Laser Inscription Method for Single-Peak Bragg Gratings in Multimode CYTOP Polymer Optical Fiber. Journal of Lightwave Technology, 35(24), 5404-5410. doi:10.1109/jlt.2017.2776862Yuan, W., Stefani, A., Bache, M., Jacobsen, T., Rose, B., Herholdt-Rasmussen, N., … Bang, O. (2011). Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Optics Communications, 284(1), 176-182. doi:10.1016/j.optcom.2010.08.069Bundalo, I.-L., Nielsen, K., Woyessa, G., & Bang, O. (2017). Long-term strain response of polymer optical fiber FBG sensors. Optical Materials Express, 7(3), 967. doi:10.1364/ome.7.00096
    corecore