22,520 research outputs found

    Topological Correlations in a Layer Adsorbed on a Crystal Surface

    Get PDF
    The incoherent scattering of electrons by a layer adsorbed at a single crystal surface is determined by the topological correlations of elements forming the adsorbed layer. The model for the description of atoms or molecules adsorbed on the surface is formulated in terms of occupation operators which are expressed in terms of pseudospin operators with a given spin value. The correlations can be determined by the fluctuation dissipation theorem in connection with the susceptibility or given directly by means of the Green functions properly chosen. An example of the topological or chemical disorder of two components is considered in detail. The calculations of the topological correlations allow us to find the incoherent scattering amplitude as a function of the surface coverage which can be experimentally detected.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę

    EduStream

    Get PDF
    After getting a glimpse into a world where we are unable to leave our houses, we realize the level of in-class education has been a difficult one to uphold. Many people are currently struggling to keep up with class material due to the new online format. However, there have been people experiencing these problems with education long before 2020. EduStream aims to provide tutoring sessions through live-stream and recordings to anyone looking to improve their education. During early versions of EduStream, user testing was collected through paper prototyping and the testing revealed EduStream is a program that university students would be willing to use. Students were interested in the simplicity of the interface and countless hours of free, additional help they would have available to them at a moment’s notice. The idea of live-streaming classes and tutoring sessions is something we expect to help make learning more accessible to users who are unable to attend class and further enrich the learning process for everyone involved. We are able to include a larger demographic of people into the education system by allowing learning opportunities to extend outside of the classroom while simultaneously enhancing current students by having class lectures accessible outside of the classroom

    Case Based Reasoning for Chemical Engineering Design

    Get PDF
    With current industrial environment (competition, lower profit margin, reduced time to market, decreased product life cycle, environmental constraints, sustainable development, reactivity, innovation…), we must decrease the time for design of new products or processes. While the design activity is marked out by several steps, this article proposed a decision support tool for the preliminary design step. This tool is based on the Case Based Reasoning (CBR) method. This method has demonstrated its effectiveness in other domains (medical, architecture…) and more recently in chemical engineering. This method, coming from Artificial Intelligence, is based on the reusing of earlier experiences to solve new problems. The goal of this article is to show the utility of such method for unit operation (for example) pre-design but also to propose several evolutions for CBR through a domain as complex as the chemical engineering is (because of its interactions, non linearity, intensification problems…). During the pre-design step, some parameters like operating conditions are not precisely known but we have an interval of possible values, worse we only have a partial description of the problem.. To take into account this imprecision in the problem description, the CBR method is coupled with the fuzzy sets theory. After a mere presentation of the CBR method, a practical implementation is described with the choice and the pre-design of packing for separation columns

    Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference

    Full text link
    We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 μ\mum frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules

    Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging

    Get PDF
    Pre-printInternational audienceThis paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI

    Multimodal Plane Wave Imaging for Non-destructive Testing

    Get PDF
    International audienceUltrasonic imaging with high frame rates is of great interest in Non-Destructive Testing (NDT) to perform fast inspections. In this communication, we propose a new fast imaging method for NDT which is derived from the medical Plane Wave Imaging (PWI). The PWI method is applied to immersion-testing configurations (plane or complex water/steel interface between the probe and the image area) and to different imaging modes (imaging with direct or half-skip wave paths) according to the type of defects (point-like or extended crack-types defects)

    Routing Optimisation for Towing a Floating Offshore Wind Turbine under Weather Constraints

    Get PDF
    This paper presents a methodology for optimising routing for towing of fully assembled Floating Offshore Wind Turbines using a purpose-built ship simulator to generate datasets describing dynamics for a towing arrangement together with the engine data of the ship, and using such dataset and historical metocean data to perform multi-objective route optimisation for the tow using NSGA-II evolutionary algorithm. The work introduces the new ship simulator and the modelling of the platform VolturnUS-S, including the discussion of a comparative experiment between the model in the ship simulator and a 1:70 scale model in a wave tank. This is then followed by a presentation of the towing experiments, the characteristics of the data obtained from them, and the methodology for the optimisation of the towing routes with the following minimisation objectives: the duration of the tow, the maximum tension in the towing line, and the carbon emissions. Results are presented and discussed together with the limitations. The methodology has the potential to offer rapid and accurate results, providing a framework for safe, fast, and economical experimental process that could enhance visibility for operations before high maturity level is achieved or they can be physically performed, and contribute to improve marine operations
    corecore