4,262 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    Rapid in situ imaging and whole genome sequencing of biofilm in neonatal feeding tubes: a clinical proof of concept

    Get PDF
    The bacterial flora of nasogastric feeding tubes and faecal samples were analysed for a low-birth weight (725g) neonate EGA 25 weeks in intensive care. Samples were collected at age 6 and 8 weeks of life. Optical coherence tomography (OCT) was used to visualise bacterial biofilms inside the nasogastric feeding tubes. The biofilm was heterogeneously distributed along the tube lumen wall, and had a depth of up to 500µm. The bacterial biofilm and faecal samples included Enterococcus faecalis and Enterobacter hormaechei. Representative strains, recovered from both feeding tubes and faecal samples, were whole genome sequenced using Illumina, Mi-Seq, which revealed indistinguishable strains, each with less than 28 SNP differences, of E. faecalis and E. hormaechei. The E. faecalis strains were from two sequence types (ST191 and ST211) and encoded for a number of traits related to biofilm formation (BopD), adherence (Epb pili), virulence (cps loci, gelatinase, SprE) and antibiotic resistances (IsaA, tetM). The E. hormaechei were all ST106, and encoded for blaACT-15 β–lactamase and fosfomycin resistance (fosA). This proof of concept study demonstrates that bacterial flora within the neonatal feeding tubes may influence the bacterial colonisation of the intestinal tract and can be visualised nondestructively using OCT

    Spatial and Seasonal Distribution of American Whaling and Whales in the Age of Sail

    Get PDF
    American whalemen sailed out of ports on the east coast of the United States and in California from the 18th to early 20th centuries, searching for whales throughout the world’s oceans. From an initial focus on sperm whales (Physeter macrocephalus) and right whales (Eubalaena spp.), the array of targeted whales expanded to include bowhead whales (Balaena mysticetus), humpback whales (Megaptera novaeangliae), and gray whales (Eschrichtius robustus). Extensive records of American whaling in the form of daily entries in whaling voyage logbooks contain a great deal of information about where and when the whalemen found whales. We plotted daily locations where the several species of whales were observed, both those caught and those sighted but not caught, on world maps to illustrate the spatial and temporal distribution of both American whaling activity and the whales. The patterns shown on the maps provide the basis for various inferences concerning the historical distribution of the target whales prior to and during this episode of global whaling

    Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing

    Get PDF
    Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a “proof-of-concept” of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci

    Disease surveillance using a hidden Markov model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance which is suitable for use with sparse small area count data and requires little baseline data.</p> <p>Methods</p> <p>A Bayesian HMM was designed to monitor routinely collected notifiable disease data that are aggregated by residential postcode. Semi-synthetic data were used to evaluate the algorithm and compare outbreak detection performance with the established Early Aberration Reporting System (EARS) algorithms and a negative binomial cusum.</p> <p>Results</p> <p>Algorithm performance varied according to the desired false alarm rate for surveillance. At false alarm rates around 0.05, the cusum-based algorithms provided the best overall outbreak detection performance, having similar sensitivity to the HMMs and a shorter average time to detection. At false alarm rates around 0.01, the HMM algorithms provided the best overall outbreak detection performance, having higher sensitivity than the cusum-based Methods and a generally shorter time to detection for larger outbreaks. Overall, the 14-day HMM had a significantly greater area under the receiver operator characteristic curve than the EARS C3 and 7-day negative binomial cusum algorithms.</p> <p>Conclusion</p> <p>Our findings suggest that the HMM provides an effective method for the surveillance of sparse small area notifiable disease data at low false alarm rates. Further investigations are required to evaluation algorithm performance across other diseases and surveillance contexts.</p

    Determinants of Initiation Codon Selection during Translation in Mammalian Cells

    Get PDF
    Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5′ leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons−both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5′ cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5′ leader length, and is not necessarily determined by the order of AUG codons (5′→3′). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells

    Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study

    Get PDF
    Natural Eggshell Membrane (NEM®) is a new novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy articular cartilage and the surrounding synovium. The randomized, multicenter, double-blind, placebo-controlled Osteoarthritis Pain Treatment Incorporating NEM® clinical study was conducted to evaluate the efficacy and safety of NEM® as a treatment for pain and stiffness associated with osteoarthritis of the knee. Sixty-seven patients were randomly assigned to receive either oral NEM® 500 mg (n = 34) or placebo (n = 33) daily for 8 weeks. The primary endpoint was the change in overall Western Ontario and McMasters Universities (WOMAC) Osteoarthritis Index as well as pain, stiffness, and function WOMAC subscales measured at 10, 30, and 60 days. The clinical assessment was performed on the intent-to-treat population. Supplementation with NEM® produced an absolute rate of response that was statistically significant (up to 26.6%) versus placebo at all time points for both pain and stiffness, but was not significantly improved for function and overall WOMAC scores, although trending toward improvement. Rapid responses were seen for mean pain subscores (15.9% reduction, P = 0.036) and mean stiffness subscores (12.8% reduction, P = 0.024) occurring after only 10 days of supplementation. There were no serious adverse events reported during the study and the treatment was reported to be well tolerated by study participants. Natural Eggshell Membrane (NEM®) is an effective and safe option for the treatment of pain and stiffness associated with knee osteoarthritis. Supplementation with NEM®, 500 mg taken once daily, significantly reduced both joint pain and stiffness compared to placebo at 10, 30, and 60 days. The Clinical Trial Registration number for this study is NCT00750477

    Inter-observer variability of visual analysis of “stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria

    Get PDF
    To assess the inter-observer agreement of adenosine “stress”-only visual analysis of perfusion MR images in relation to experience and reading criteria. 106 adenosine perfusion MR examinations out of 350, 46 consecutive positive examinations and 60 randomly selected negative examinations were visually analysed by three individual readers (two residents and a technician) with different levels of experience. Readings (blinded for any information) were compared with the reading of an expert radiologist. After a month the examinations were presented again (randomly) without knowledge regarding the first readings. This time readings were performed with the systematical use of reading criteria. Agreement with the expert reading was good for the most experienced resident (k = 0.88). Kappa was 0.48 for the least experienced, and 0.57 for the technician. After the second systematical reading inter-observer agreement increased to 0.9, 0.68 and 0.77 respectively. Overall kappa increased from 0.59 to 0.71. The use of reading criteria significantly improved the performance of the least experienced reader (P = 0.01). Visual analysis of adenosine “stress”-only first-pass perfusion MR images has moderate to very good agreement. Performance is experience related, but the systematic use of reading criteria significantly increased performance for the least experienced observer
    corecore