6 research outputs found

    The Cosmic Far-Infrared Background Buildup Since Redshift 2 at 70 and 160 microns in the COSMOS and GOODS fields

    Get PDF
    The Cosmic Far-Infrared Background (CIB) at wavelengths around 160 {\mu}m corresponds to the peak intensity of the whole Extragalactic Background Light, which is being measured with increasing accuracy. However, the build up of the CIB emission as a function of redshift, is still not well known. Our goal is to measure the CIB history at 70 {\mu}m and 160 {\mu}m at different redshifts, and provide constraints for infrared galaxy evolution models. We use complete deep Spitzer 24 {\mu}m catalogs down to about 80 {\mu}Jy, with spectroscopic and photometric redshifts identifications, from the GOODS and COSMOS deep infrared surveys covering 2 square degrees total. After cleaning the Spitzer/MIPS 70 {\mu}m and 160 {\mu}m maps from detected sources, we stacked the far-IR images at the positions of the 24 {\mu}m sources in different redshift bins. We measured the contribution of each stacked source to the total 70 and 160 {\mu}m light, and compare with model predictions and recent far-IR measurements made with Herschel/PACS on smaller fields. We have detected components of the 70 and 160 {\mu}m backgrounds in different redshift bins up to z ~ 2. The contribution to the CIB is maximum at 0.3 <= z <= 0.9 at 160{\mu}m (and z <= 0.5 at 70 {\mu}m). A total of 81% (74%) of the 70 (160) {\mu}m background was emitted at z < 1. We estimate that the AGN relative contribution to the far-IR CIB is less than about 10% at z < 1.5. We provide a comprehensive view of the CIB buildup at 24, 70, 100, 160 {\mu}m. IR galaxy models predicting a major contribution to the CIB at z < 1 are in agreement with our measurements, while our results discard other models that predict a peak of the background at higher redshifts. Our results are available online http://www.ias.u-psud.fr/irgalaxies/ .Comment: Accepted in Astronomy & Astrophysic

    Spitzer 70/160 μm observations of high-redshift ULIRGs and HyLIRGs in the Boötes field

    No full text
    We present new 70 and 160 ÎĽm observations of a sample of extremely red (R - [24] gsim 15 mag), mid-infrared bright, high-redshift (1.7 lsim z lsim 2.8) galaxies. All targets detected in the far-infrared exhibit rising spectral energy distributions (SEDs) consistent with dust emission from obscured active galactic nuclei (AGNs) and/or star-forming regions in luminous IR galaxies (LIRGs). We find that the SEDs of the high-redshift sources are more similar to canonical AGN-dominated local ultraluminous IR galaxies (ULIRGs) with significant warm dust components than to typical local star-forming ULIRGs. The inferred IR (8-1000 ÎĽm) bolometric luminosities are found to be L bol ~ 4 Ă— 1012 L sun to ~3 Ă— 1013 L sun (ULIRGs/hyper-luminous IR galaxies (HyLIRGs)), representing the first robust constraints on L bol for this class of object
    corecore