332 research outputs found

    Acral Metastasis in a Patient with Ampullary Carcinoma

    Get PDF
    Although Skin Metastasis From A Malignant Tumor Of An Internal Organ Usually Occurs At An Advanced Disease Stage, There Has Been No Prior Report Of A Cutaneous Acral Metastasis From Ampullary Carcinoma To Date. We Report A 71-year Old Male Patient With Cutaneous Metastasis From An Ampullary Adenocarcinoma. The Patient Had A History Of Pylorus Preserving Pancreaticoduodenectomy For Carcinoma Of The Ampulla Of Vater Two Years Prior To Presentation. Physical Examination Revealed Ill-defined, Painful And Hard Erythematous Nodules At The Left Thumb And Distal Phalanx Of The Right Middle Finger. The Computed Tomography Scan Showed Low Density Masses In The Retroperitoneum; The Histological Examination Of A Nodule From The Right Middle Finger Showed A Metastatic Adenocarcinoma. This Case Illustrates That Cutaneous Metastasis From Ampullary Carcinoma Has A Poor Prognosis

    A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24

    Get PDF
    Split hand-split foot malformation (SHFM) is characterized by hypoplasia/aplasia of the central digits with fusion of the remaining digits. SHFM is usually an autosomal dominant condition and at least five loci have been identified in humans. Mutation analysis of the DACTYLIN gene, suspected to be responsible for SHFM3 in chromosome 10q24, was conducted in seven SHFM patients. We screened the coding region of DACTYLIN by single-strand conformation polymorphism and sequencing, and found no point mutations. However, Southern, pulsed field gel electrophoresis and dosage analyses demonstrated a complex rearrangement associated with a ∼0.5 Mb tandem duplication in all the patients. The distal and proximal breakpoints were within an 80 and 130 kb region, respectively. This duplicated region contained a disrupted extra copy of the DACTYLIN gene and the entire LBX1 and β-TRCP genes, known to be involved in limb development. The possible role of these genes in the SHFM3 phenotype is discusse

    Mutation analysis of "Endoglin" and "Activin receptor-like kinase" genes in German patients with hereditary hemorrhagic telangiectasia and the value of rapid genotyping using an allele-specific PCR-technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is an autosomal dominant disorder which is clinically characterised by recurrent epistaxis, mucocutaneous telangiectasia and visceral arteriovenous malformations. Genetic linkage studies identified two genes primarily related to HHT: endoglin (<it>ENG</it>) on chromosome 9q33-34 and activin receptor-like kinase1 (<it>ACVRL1</it>) on chromosome 12q13. We have screened a total of 41 unselected German patients with the suspected diagnosis of HHT. Mutation analysis for the <it>ENG </it>and <it>ACVRL1 </it>genes in all patients was performed by PCR amplification. Sequences were then compared to the HHT database <url>http://www.hhtmutation.org</url> sequences of the <it>ENG </it>mRNA (accession no. BC014271.2) and the <it>ACVRL1 </it>mRNA (accession no. NM000020.1).</p> <p>Results</p> <p>We identified 15 different mutations in 18 cases by direct sequencing. Among these mutations, one novel <it>ENG </it>mutation could be detected which has not yet been described in the literature before. The genotype-phenotype correlation was consistent with a higher frequency of pulmonary arteriovenous malformations in patients with <it>ENG </it>mutations than in patients with <it>ACVRL1 </it>mutations in our collective.</p> <p>Conclusion</p> <p>For rapid genotyping of mutations and SNPs (single nucleotide polymorphisms) in <it>ENG </it>and <it>ACVRL1</it>, allele-specific PCR methods with sequence-specific primers (PCR-SSP) were established and their value analysed.</p

    Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration

    Get PDF
    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types

    Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region

    Get PDF
    Abstract Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes

    Deficient Signaling via Alk2 (Acvr1) Leads to Bicuspid Aortic Valve Development

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1) in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life

    Estimation of allele frequency and association mapping using next-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., < 15<it>X</it>). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates.</p> <p>Results</p> <p>We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data.</p> <p>Conclusions</p> <p>Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.</p

    Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors

    Get PDF
    The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder
    corecore