5,128 research outputs found

    Numerical stability analysis of a vortex ring with swirl

    Get PDF
    International audienceThe linear instability of a vortex ring with swirl with Gaussian distributions of azimuthal vorticity and velocity in its core is studied by direct numerical simulation. The numerical study is carried out in two steps: first, an axisymmetric simulation of the Navier-Stokes equations is performed to obtain the quasi-steady state that forms a base flow; then, the equations are linearized around this base flow and integrated for a sufficiently long time to obtain the characteristics of the most unstable mode. It is shown that the vortex rings are subjected to curvature instability as predicted analytically by Blanco-Rodríguez & Le DizÚs (J. Fluid Mech., vol. 814, 2017, pp. 397-415). Both the structure and the growth rate of the unstable modes obtained numerically are in good agreement with the analytical results. However, a small overestimation (e.g. 22 % for a curvature instability mode) by the theory of the numerical growth rate is found for some instability modes. This is most likely due to evaluation of the critical layer damping which is performed for the waves on axisymmetric line vortices in the analysis. The actual position of the critical layer is affected by deformation of the core due to the curvature effect; as a result, the damping rate changes since it is sensitive to the position of the critical layer. Competition between the curvature and elliptic instabilities is also investigated. Without swirl, only the elliptic instability is observed in agreement with previous numerical and experimental results. In the presence of swirl, sharp bands of both curvature and elliptic instabilities are obtained for Δ = a/R = 0.1, where a is the vortex core radius and R the ring radius, while the elliptic instability dominates for Δ = 0.18. New types of instability mode are also obtained: a special curvature mode composed of three waves is observed and spiral modes that do not seem to be related to any wave resonance. The curvature instability is also confirmed by direct numerical simulation of the full Navier-Stokes equations. Weakly nonlinear saturation and subsequent decay of the curvature instability are also observed

    Wavefield extraction using multi-channel chirplet decomposition

    No full text
    International audienceIn acoustical and seismic fields, wavefield extraction has alwaysbeen a crucial issue to solve inverse problem. Depending on the experimentalconfiguration, conventional methods of wavefield decomposition might nolonger likely to hold. In this paper, an original approach is proposed based ona multichannel decomposition of the signal into a weighted sum of elementaryfunctions known as chirplets. Each chirplet is described by physical parametersand the collection of chirplets makes up a large adaptable dictionary,so that a chirplet corresponds unambiguously to one wave componen

    Comparison of charge modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    A charge modulation has recently been reported in (Y,Nd)Ba2_2Cu3_3O6+x_{6+x} [Ghiringhelli {\em et al.} Science 337, 821 (2013)]. Here we report Cu L3L_3 edge soft x-ray scattering studies comparing the lattice modulation associated with the charge modulation in YBa2_2Cu3_3O6.6_{6.6} with that associated with the well known charge and spin stripe order in La1.875_{1.875}Ba0.125_{0.125}CuO4_4. We find that the correlation length in the CuO2_2 plane is isotropic in both cases, and is 259±9259 \pm 9 \AA for La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and 55±1555 \pm 15 \AA for YBa2_2Cu3_3O6.6_{6.6}. Assuming weak inter-planar correlations of the charge ordering in both compounds, we conclude that the order parameters of the lattice modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and YBa2_2Cu3_3O6.6_{6.6} are of the same order of magnitude.Comment: 3 pages, 2 figure

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+ÎŽ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+ÎŽ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x

    Full text link
    We report a detailed Raman scattering study of the lattice dynamics in detwinned single crystals of the underdoped high temperature superconductor YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the phonon spectra of these compounds are similar to that of optimally doped YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200 K in underdoped crystals. The temperature dependence of these new features indicates that they are associated with the incommensurate charge density wave state recently discovered using synchrotron x-ray scattering techniques on the same single crystals. Raman scattering has thus the potential to explore the evolution of this state under extreme conditions.Comment: 12 pages, 11 figure

    High index contrast photonic platforms for on-chip Raman spectroscopy

    Get PDF
    Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively

    MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Get PDF
    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper

    Long-range charge density wave proximity effect at cuprate-manganate interfaces

    Get PDF
    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper-oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant x-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3_{2/3}Ca1/3_{1/3}MnO3_3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2_2Cu3_3O6+ÎŽ_{6+\delta} (Ύ∌1\bf \delta \sim 1), and that this effect persists over several tens of nm. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge density wave state in the cuprates, and more generally, to manipulate the interplay between different collective phenomena in metal oxides.Comment: modified version published in Nature Material

    Infrastructure de Services Cloud FaaS sur noeuds IoT

    Get PDF
    In this article, we describe the PyCloudIoT cloud infrastructure. PyCloudIoT uses a FaaS cloud computing model for offloading numerical computations on a cluster with resource-constrained nodes rather than powerful datacenter. This infrastructure aims at exploiting unused resources of IoT nodes - already deployed at the edge of the network - to reduce latency of user requests. This extra computation must be done without significant energy consumption - IoT nodes being battery-powered. -- Dans cet article, nous d\'ecrivons l'infrastructure cloud PyCloudIoT. PyCloudIoT s'appuie sur un mod\`ele de cloud computing FaaS pour du calcul num\'erique d\'eport\'e vers une ferme de calcul compos\'ee de noeuds \`a capacit\'es restreintes au lieu d'un datacentre puissant. Cette infrastructure vise \`a tirer profit des ressources inutilis\'ees d\'eploy\'ees sur n{\oe}uds IoT sans augmenter significativement leur consommation d'\'energie et, en m\^eme temps, \`a rapprocher ces ressources des utilisateurs pour r\'eduire la latence, en d\'eveloppant un mod\`ele cloud en bord de r\'eseau.Comment: in French. Conf\'erence d'informatique en Parall\'elisme, Architecture et Syst\`emes (ComPAS'2020), Lyon, Franc
    • 

    corecore