5,561 research outputs found
Numerical stability analysis of a vortex ring with swirl
International audienceThe linear instability of a vortex ring with swirl with Gaussian distributions of azimuthal vorticity and velocity in its core is studied by direct numerical simulation. The numerical study is carried out in two steps: first, an axisymmetric simulation of the Navier-Stokes equations is performed to obtain the quasi-steady state that forms a base flow; then, the equations are linearized around this base flow and integrated for a sufficiently long time to obtain the characteristics of the most unstable mode. It is shown that the vortex rings are subjected to curvature instability as predicted analytically by Blanco-RodrĂguez & Le DizĂšs (J. Fluid Mech., vol. 814, 2017, pp. 397-415). Both the structure and the growth rate of the unstable modes obtained numerically are in good agreement with the analytical results. However, a small overestimation (e.g. 22 % for a curvature instability mode) by the theory of the numerical growth rate is found for some instability modes. This is most likely due to evaluation of the critical layer damping which is performed for the waves on axisymmetric line vortices in the analysis. The actual position of the critical layer is affected by deformation of the core due to the curvature effect; as a result, the damping rate changes since it is sensitive to the position of the critical layer. Competition between the curvature and elliptic instabilities is also investigated. Without swirl, only the elliptic instability is observed in agreement with previous numerical and experimental results. In the presence of swirl, sharp bands of both curvature and elliptic instabilities are obtained for Δ = a/R = 0.1, where a is the vortex core radius and R the ring radius, while the elliptic instability dominates for Δ = 0.18. New types of instability mode are also obtained: a special curvature mode composed of three waves is observed and spiral modes that do not seem to be related to any wave resonance. The curvature instability is also confirmed by direct numerical simulation of the full Navier-Stokes equations. Weakly nonlinear saturation and subsequent decay of the curvature instability are also observed
Wavefield extraction using multi-channel chirplet decomposition
International audienceIn acoustical and seismic fields, wavefield extraction has alwaysbeen a crucial issue to solve inverse problem. Depending on the experimentalconfiguration, conventional methods of wavefield decomposition might nolonger likely to hold. In this paper, an original approach is proposed based ona multichannel decomposition of the signal into a weighted sum of elementaryfunctions known as chirplets. Each chirplet is described by physical parametersand the collection of chirplets makes up a large adaptable dictionary,so that a chirplet corresponds unambiguously to one wave componen
Comparison of charge modulations in LaBaCuO and YBaCuO
A charge modulation has recently been reported in (Y,Nd)BaCuO
[Ghiringhelli {\em et al.} Science 337, 821 (2013)]. Here we report Cu
edge soft x-ray scattering studies comparing the lattice modulation associated
with the charge modulation in YBaCuO with that associated with
the well known charge and spin stripe order in LaBaCuO.
We find that the correlation length in the CuO plane is isotropic in both
cases, and is \AA for LaBaCuO and \AA for YBaCuO. Assuming weak inter-planar correlations of
the charge ordering in both compounds, we conclude that the order parameters of
the lattice modulations in LaBaCuO and
YBaCuO are of the same order of magnitude.Comment: 3 pages, 2 figure
Momentum-dependent charge correlations in YBaCuO superconductors probed by resonant x-ray scattering: Evidence for three competing phases
We have used resonant x-ray scattering to determine the momentum dependent
charge correlations in YBaCuO samples with highly ordered
chain arrays of oxygen acceptors (ortho-II structure). The results reveal
nearly critical, biaxial charge density wave (CDW) correlations at in-plane
wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity
exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length
are enhanced as superconductivity is weakened by an external magnetic field.
Analogous experiments were carried out on a YBaCuO crystal with
a dilute concentration of spinless (Zn) impurities, which had earlier been
shown to nucleate incommensurate magnetic order. Compared to pristine crystals
with the same doping level, the CDW amplitude and correlation length were found
to be strongly reduced. These results indicate a three-phase competition
between spin-modulated, charge-modulated, and superconducting states in
underdoped YBaCuO.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let
Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x
We report a detailed Raman scattering study of the lattice dynamics in
detwinned single crystals of the underdoped high temperature superconductor
YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the
phonon spectra of these compounds are similar to that of optimally doped
YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200
K in underdoped crystals. The temperature dependence of these new features
indicates that they are associated with the incommensurate charge density wave
state recently discovered using synchrotron x-ray scattering techniques on the
same single crystals. Raman scattering has thus the potential to explore the
evolution of this state under extreme conditions.Comment: 12 pages, 11 figure
High index contrast photonic platforms for on-chip Raman spectroscopy
Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively
Long-range charge density wave proximity effect at cuprate-manganate interfaces
The interplay between charge density waves (CDWs) and high-temperature
superconductivity is currently under intense investigation. Experimental
research on this issue is difficult because CDW formation in bulk copper-oxides
is strongly influenced by random disorder, and a long-range-ordered CDW state
in high magnetic fields is difficult to access with spectroscopic and
diffraction probes. Here we use resonant x-ray scattering in zero magnetic
field to show that interfaces with the metallic ferromagnet
LaCaMnO greatly enhance CDW formation in the optimally
doped high-temperature superconductor YBaCuO (), and that this effect persists over several tens of nm. The wavevector
of the incommensurate CDW serves as an internal calibration standard of the
charge carrier concentration, which allows us to rule out any significant
influence of oxygen non-stoichiometry, and to attribute the observed phenomenon
to a genuine electronic proximity effect. Long-range proximity effects induced
by heterointerfaces thus offer a powerful method to stabilize the charge
density wave state in the cuprates, and more generally, to manipulate the
interplay between different collective phenomena in metal oxides.Comment: modified version published in Nature Material
MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury
The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper
Infrastructure de Services Cloud FaaS sur noeuds IoT
In this article, we describe the PyCloudIoT cloud infrastructure. PyCloudIoT
uses a FaaS cloud computing model for offloading numerical computations on a
cluster with resource-constrained nodes rather than powerful datacenter. This
infrastructure aims at exploiting unused resources of IoT nodes - already
deployed at the edge of the network - to reduce latency of user requests. This
extra computation must be done without significant energy consumption - IoT
nodes being battery-powered.
--
Dans cet article, nous d\'ecrivons l'infrastructure cloud PyCloudIoT.
PyCloudIoT s'appuie sur un mod\`ele de cloud computing FaaS pour du calcul
num\'erique d\'eport\'e vers une ferme de calcul compos\'ee de noeuds \`a
capacit\'es restreintes au lieu d'un datacentre puissant. Cette infrastructure
vise \`a tirer profit des ressources inutilis\'ees d\'eploy\'ees sur n{\oe}uds
IoT sans augmenter significativement leur consommation d'\'energie et, en
m\^eme temps, \`a rapprocher ces ressources des utilisateurs pour r\'eduire la
latence, en d\'eveloppant un mod\`ele cloud en bord de r\'eseau.Comment: in French. Conf\'erence d'informatique en Parall\'elisme,
Architecture et Syst\`emes (ComPAS'2020), Lyon, Franc
- âŠ