9 research outputs found

    Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    Get PDF
    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∌0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD

    Interstitial ultrasound ablation of vertebral and paraspinal tumours: Parametric and patient-specific simulations

    No full text
    PURPOSE: Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS: 3D patient-specific finite element models (n=11) of interstitial ultrasound ablation of tumours associated with spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43°C (EM43°C)) and safety margins (<45°C & <6 EM43°C), and to determine performance and required delivery parameters. RESULTS: Osteolytic tumours (≀44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS: Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours

    Viral retinitis: diagnosis and management in the era of biologic immunosuppression: A review

    No full text

    Measurement of the branching fraction and CP violating asymmetries in neutral B decays to D*+- D-+

    Get PDF
    We present measurements of the branching fraction and CP-violating asymmetries for neutral B decays to D*+-D-+. The measurement uses a data sample of approximately 88 million Y(4S) --> B Bbar decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. We measure the branching fraction to be (8.8 +- 1.0 +- 1.3) x 10^-4 and the time-integrated CP-violating asymmetry between the rates to D*+D- and D*-D+ to be A = -0.03 +- 0.11 +- 0.05. We also measure the time-dependent CP-violating asymmetry parameters to be S-+ = -0.24 +- 0.69 +- 0.12, C-+ = -0.22 +- 0.37 +- 0.10 for B --> D*-D+ and S+- = -0.82 +- 0.75 +- 0.14$, C+- = -0.47 +- 0.40 +- 0.12 for B --> D*+D-. In each case the first error is statistical and the second error is systematic.Comment: 7 pages, 3 figures, published as Phys. Rev. Lett 90 (2003) 22180
    corecore