278 research outputs found

    Integrated analysis of microRNA and mRNA expression profiles in physiological myelopoiesis: role of hsa-mir-299-5p in CD34+ progenitor cells commitment

    Get PDF
    Hematopoiesis entails a series of hierarchically organized events that proceed throughout cell specification and terminates with cell differentiation. Commitment needs the transcription factors' effort, which, in concert with microRNAs, drives cell fate and responds to promiscuous patterns of gene expression by turning on lineage-specific genes and repressing alternate lineage transcripts. We obtained microRNA profiles from human CD34+ hematopoietic progenitor cells and in vitro differentiated erythroblasts, megakaryoblasts, monoblasts and myeloblast precursors that we analyzed together with their gene expression profiles. The integrated analysis of microRNA–mRNA expression levels highlighted an inverse correlation between microRNAs specifically upregulated in one single-cell progeny and their putative target genes, which resulted in downregulation. Among the upregulated lineage-enriched microRNAs, hsa-miR-299-5p emerged as having a role in controlling CD34+ progenitor fate, grown in multilineage culture conditions. Gain- and loss-of-function experiments revealed that hsa-miR-299-5p participates in the regulation of hematopoietic progenitor fate, modulating megakaryocytic-granulocytic versus erythroid-monocytic differentiation

    microPIR: An Integrated Database of MicroRNA Target Sites within Human Promoter Sequences

    Get PDF
    Background: microRNAs are generally understood to regulate gene expression through binding to target sequences within 39-UTRs of mRNAs. Therefore, computational prediction of target sites is usually restricted to these gene regions. Recent experimental studies though have suggested that microRNAs may alternatively modulate gene expression by interacting with promoters. A database of potential microRNA target sites in promoters would stimulate research in this field leading to more understanding of complex microRNA regulatory mechanism. Methodology: We developed a database hosting predicted microRNA target sites located within human promoter sequences and their associated genomic features, called microPIR (microRNA-Promoter Interaction Resource). microRNA seed sequences were used to identify perfect complementary matching sequences in the human promoters and the potential target sites were predicted using the RNAhybrid program..15 million target sites were identified which are located within 5000 bp upstream of all human genes, on both sense and antisense strands. The experimentally confirmed argonaute (AGO) binding sites and EST expression data including the sequence conservation across vertebrate species of each predicted target are presented for researchers to appraise the quality of predicted target sites. The microPIR database integrates various annotated genomic sequence databases, e.g. repetitive elements, transcription factor binding sites, CpG islands, and SNPs, offering users the facility to extensively explore relationships among target sites and other genomi

    Effects of two common polymorphisms in the 3' untranslated regions of estrogen receptor β on mRNA stability and translatability

    Get PDF
    Estrogen signaling is mediated by estrogen receptors (ERs), ERα and ERβ. Aberrant estrogen signaling is involved in breast cancer development. ERα is one of the key biomarkers for diagnosis and treatment of breast cancer. Unlike ERα, ERβ is still not introduced as a marker for diagnosis and established as a target of therapy. Numerous studies suggest antiproliferative effects of ERβ, however its role remains to be fully explored. Albeit important, ERα is not a perfect marker, and some aspects of ERα function are still unclear. This thesis aims to characterize distinct molecular facets of ER action relevant for breast cancer and provide valuable information for ER-based diagnosis and treatment design. In PAPER I, we analyzed the functionality of two common single nucleotide polymorphisms in the 3’ untranslated regions of ERβ, rs4986938 and rs928554, which have been extensively investigated for association with various diseases. A significant difference in allelic expression was observed for rs4986938 in breast tumor samples from heterozygous individuals. However, no difference in mRNA stability or translatability between the alleles was observed. In PAPER II, we provided a more comprehensive understanding of ERβ function independent of ERα. A global gene expression analysis in a HEK293/ERβ cell model identified a set of ERβ-regulated genes. Gene Ontology (GO) analysis showed that they are involved in cell-cell signaling, morphogenesis and cell proliferation. Moreover, ERβ expression resulted in a significant decrease in cell proliferation. In PAPER III, using the human breast cancer MCF-7/ERβ cell model, we demonstrated, for the first time, the binding of ERα/β heterodimers to various DNA-binding regions in intact chromatin. In PAPER IV, we investigated a potential cross-talk between estrogen signaling and DNA methylation by identifying their common target genes in MCF-7 cells. Gene expression profiling identified around 150 genes regulated by both 17β- estradiol (E2) and a hypomethylating agent 5-aza-2’-deoxycytidine. Based on GO analysis, CpG island prediction analysis and previously reported ER binding regions, we selected six genes for further analysis. We identified BTG3 and FHL2 as direct target genes of both pathways. However, our data did not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes. In PAPER V, we further explored the interactions between estrogen signaling and DNA methylation, with focus on DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). E2, via ERα, up-regulated DNMT1 and down-regulated DNMT3a and DNMT3b mRNA expression. Furthermore, DNMT3b interacted with ERα. siRNA-mediated DNMT3b depletion increased the expression of two genes, CDKN1A and FHL2. We proposed that the molecular mechanism underlying regulation of FHL2 and CDKN1A gene expression involves interplay of DNMT3b and ERα. In conclusion, the studies presented in this thesis contribute to the knowledge of ERβ function, and give additional insight into the cross-talk mechanisms underlying ERα signaling with ERβ and with DNA methylation pathways

    Differential Expression Profile and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients

    Get PDF
    The technology available for cancer diagnosis and prognosis is not yet satisfactory at the molecular level, and requires further improvements. Micro RNAs (miRNAs) have been recently reported as useful biomarkers in diseases including cancer. We performed a miRNA expression profiling study using peripheral blood from breast cancer patients to detect and identify characteristic patterns. A total of 100 breast cancer patients and 89 healthy patients were recruited for miRNA genotyping and expression profiling. We found that hs-miR-196a2 in premenopausal patients, and hs-miR-499, hs-miR-146a and hs-miR-196a2 in postmenopausal patients, may discriminate breast cancer patients from healthy individuals. In addition, we found a significant association between two microRNA polymorphisms (hs-miR-196a2 and hs-miR-499) and breast cancer risk. However, no significant association between the hs-miR-146a gene and breast cancer risk was found. In summary, the study demonstrates that peripheral blood miRNAs and their expression and genotypic profiles can be developed as biomarkers for early diagnosis and prognosis of breast cancer

    Quantitative Proteomics Identify Novel miR-155 Target Proteins

    Get PDF
    Background: MicroRNAs are 22 nucleotides long non-coding RNAs and exert their function either by transcriptional or translational inhibition. Although many microRNA profiles in different tissues and disease states have already been discovered, only little is known about their target proteins. The microRNA miR-155 is deregulated in many diseases, including cancer, where it might function as an oncoMir. Methodology/Principal Findings: We employed a proteomics technique called ‘‘stable isotope labelling by amino acids in cell culture’ ’ (SILAC) allowing relative quantification to reliably identify target proteins of miR-155. Using SILAC, we identified 46 putative miR-155 target proteins, some of which were previously reported. With luciferase reporter assays, CKAP5 was confirmed as a new target of miR-155. Functional annotation of miR-155 target proteins pointed to a role in cell cycle regulation. Conclusions/Significance: To the best of our knowledge we have investigated for the first time miR-155 target proteins in the HEK293T cell line in large scale. In addition, by comparing our results to previously identified miR-155 target proteins i

    The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). METHODOLOGY: We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. RESULTS: Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. CONCLUSIONS: This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type

    A Signature of Maternal Anti-Fetal Rejection in Spontaneous Preterm Birth: Chronic Chorioamnionitis, Anti-Human Leukocyte Antigen Antibodies, and C4d

    Get PDF
    Chronic chorioamnionitis is found in more than one-third of spontaneous preterm births. Chronic chorioamnionitis and villitis of unknown etiology represent maternal anti-fetal cellular rejection. Antibody-mediated rejection is another type of transplantation rejection. We investigated whether there was evidence for antibody-mediated rejection against the fetus in spontaneous preterm birth.This cross-sectional study included women with (1) normal pregnancy and term delivery (n = 140) and (2) spontaneous preterm delivery (n = 140). We analyzed maternal and fetal sera for panel-reactive anti-HLA class I and class II antibodies, and determined C4d deposition on umbilical vein endothelium by immunohistochemistry. Maternal anti-HLA class I seropositivity in spontaneous preterm births was higher than in normal term births (48.6% vs. 32.1%, p = 0.005). Chronic chorioamnionitis was associated with a higher maternal anti-HLA class I seropositivity (p<0.01), significant in preterm and term birth. Villitis of unknown etiology was associated with increased maternal and fetal anti-HLA class I and II seropositivity (p<0.05, for each). Fetal anti-HLA seropositivity was closely related to maternal anti-HLA seropositivity in both groups (p<0.01, for each). C4d deposition on umbilical vein endothelium was more frequent in preterm labor than term labor (77.1% vs. 11.4%, p<0.001). Logistic regression analysis revealed that chronic chorioamnionitis (OR = 6.10, 95% CI 1.29–28.83), maternal anti-HLA class I seropositivity (OR = 5.90, 95% CI 1.60–21.83), and C4d deposition on umbilical vein endothelium (OR = 36.19, 95% CI 11.42–114.66) were associated with preterm labor and delivery.A major subset of spontaneous preterm births has a signature of maternal anti-fetal cellular and antibody-mediated rejections with links to fetal graft-versus-host disease and alloimmune reactions

    Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes

    Get PDF
    One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA “master regulators” (miR-22 and miR-125) and one candidate pair of “master co-regulators” (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p  =  0.045), total homocysteine levels (tHcy) (p  =  0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM
    corecore