35 research outputs found

    Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato

    Get PDF
    Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported TOMATO AGAMOUS-LIKE 1 (TAGL1) gene, the tomato ortholog of SHATTERPROOF MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of reproductive development, from flower development to fruit maturation, allowing this complex process to be carried out successfully

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes

    Get PDF
    Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA

    The black hole accretion code

    Get PDF

    Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya

    No full text
    Sites in eastern Africa have shed light on the emergence and early evolution of the genus Homo. The best known early hominin species, H. habilis and H. erectus, have often been interpreted as time-successive segments of a single anagenetic evolutionary lineage. The case for this was strengthened by the discovery of small early Pleistocene hominin crania from Dmanisi in Georgia that apparently provide evidence of morphological continuity between the two taxa. Here we describe two new cranial fossils from the Koobi Fora Formation, east of Lake Turkana in Kenya, that have bearing on the relationship between species of early Homo. A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely. The discovery of a particularly small calvaria of H. erectus indicates that this taxon overlapped in size with H. habilis, and may have shown marked sexual dimorphism. The new fossils confirm the distinctiveness of H. habilis and H. erectus, independently of overall cranial size, and suggest that these two early taxa were living broadly sympatrically in the same lake basin for almost half a million years
    corecore