845 research outputs found

    Fractal-like structures in colloid science

    Get PDF
    The present work aims at reviewing our current understanding of fractal structures in the frame of colloid aggregation as well as the possibility they offer to produce novel structured materials. In particular, the existing techniques to measure and compute the fractal dimension df are critically discussed based on the cases of organic/inorganic particles and proteins. Then the aggregation conditions affecting df are thoroughly analyzed, pointing out the most recent literature findings and the limitations of our current understanding. Finally, the importance of the fractal dimension in applications is discussed along with possible directions for the production of new structured materials

    8Li+alpha decay of 12B and its possible astrophysical implications

    Full text link
    The 12B excitation energy spectrum has been obtained from coincidence measurements of the 9Be+7Li -> 2alpha+8Li reaction at E{0}=52 MeV. The decay of the states at excitations between 10 and 16 Mev into alpha$+8Li has been observed for the first time. Observed alpha-decay indicates possible cluster structure of the 12B excited states. The influence of these states on the cross section of the astrophysically important 8Li(alpha,n)11B and 9Be+t reactions is discussed and the results are compared with existing results.Comment: accepted for publication in Europhysics Letter

    Determination of the photodisintegration reaction rates involving charged particles: systematical calculations and proposed measurements based on Extreme Light Infrastructure - Nuclear Physics (ELI-NP)

    Full text link
    Photodisintegration reaction rates involving charged particles are of relevance to the p-process nucleosynthesis that aims at explaining the production of the stable neutron-deficient nuclides heavier than iron. In this study, the cross sections and astrophysical rates of (g,p) and (g,a) reactions for about 3000 target nuclei with 10<Z<100 ranging from stable to proton dripline nuclei are computed. To study the sensitivity of the calculations to the optical model potentials (OMPs), both the phenomenological Woods-Saxon and the microscopic folding OMPs are taken into account. The systematic comparisons show that the reaction rates, especially for the (g,a) reaction, are dramatically influenced by the OMPs. Thus the better determination of the OMP is crucial to reduce the uncertainties of the photodisintegration reaction rates involving charged particles. Meanwhile, a gamma-beam facility at ELI-NP is being developed, which will open new opportunities to experimentally study the photodisintegration reactions of astrophysics interest. Considering both the important reactions identified by the nucleosynthesis studies and the purpose of complementing the experimental results for the reactions involving p-nuclei, the measurements of six (g,p) and eight (g,a) reactions based on the gamma-beam facility at ELI-NP and the ELISSA detector for the charged particles detection are proposed, and the GEANT4 simulations are correspondingly performed. The minimum required energies of the gamma-beam to measure these reactions are estimated. It is shown that the direct measurements of these photonuclear reactions within the Gamow windows at T_9=2.5 for p-process are fairly feasible and promising at ELI-NP. The expected experimental results will be used to constrain the OMPs of the charged particles, which can eventually reduce the uncertainties of the reaction rates for the p-process nucleosynthesis.Comment: 14 pages, 8 figures, Phys. Rev. C accepte
    corecore