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Abstract

In this paper we extend the GeDS methodology, recently developed by Kaishev et
al. (2016) for the Normal univariate spline regression case, to the more general GNM
(GLM) context. Our approach is to view the (non-)linear predictor as a spline with
free knots which are estimated, along with the regression coefficients and the degree
of the spline, using a two stage algorithm. In stage A, a linear (degree one) free-knot
spline is fitted to the data applying iteratively re-weighted least squares. In stage
B, a Schoenberg variation diminishing spline approximation to the fit from stage A
is constructed, thus simultaneously producing spline fits of second, third and higher
degrees. We demonstrate, based on a thorough numerical investigation that the nice
properties of the Normal GeDS methodology carry over to its GNM extension and
GeDS favourably compares with other existing spline methods.

The proposed GeDS GNM(GLM) methodology is extended to the multivariate
case of more than one independent variable by utilizing tensor product splines and
their related shape preserving variation diminishing property.
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1 Introduction

Various spline based constructions to express and estimate the linear predictor in Generali-

zed Linear Models (GLM) have recently been proposed among which the Semi-parametric

Models (SPM) of Rupert et al. (2003), the Generalized Smoothing Spline (GSS) ANOVA

models introduced in Wahba et al. (1995) (see also Gu (2013) and related implementation

in the R package gss by Gu (2014)), the Generalized Additive Models (GAM) of Hastie

and Tibshirani (1990) and the Adaptive Bayesian Regression Splines proposed by Biller

(2000). The scope and methodological background of each of these approaches can be

summarised as follows. Common features of the SPM, GAM and the GSS models are their

truly multivariate nature and the fact that the underlying estimator for the linear predictor

part is some form of a smoothing spline or a related penalized version of it. In SPM the

linear predictor is a p−spline introduced by Eilers and Marx (1996). SPM are coded in

the R package SemiPar developed by Wand (2014) which is currently limited to hand-

ling only Normal, Poisson and Binomial data. In SemiPar, the p-spline linear predictor

is in the form of a mixed model, in terms of radial basis functions. This has allowed for

some algorithmic advantages among which, automatic fitting of SPM using the generalized

linear mixed model representation and (automatic) smoothing parameter estimation using

restricted maximum likelihood.

Under the GAM methodology of Hastie and Tibshirani (1990) it is assumed that the

linear predictor is in the form of an Additive Model (AM) in which the underlying additive

functions can be selected from a pool of spline models. GAM is implemented e.g., in

the R package mgcv developed by Wood (2006) where this pool includes p-splines, Thin

Plate splines, cubic smoothing splines and shrinkage versions of them. If cubic smoothing

splines are selected, they have a prescribed number of knots, whose locations are preselected

following certain quantiles of the input covariate data and a smoothing penalty parameter is

estimated. As a result of this, the method is quite fast, but as demonstrated in Section 4 and

in the online supplement may experience significant under-fitting. For further advantages

and disadvantages of alternative choices of spline models in mgcv we refer to Wood (2006)

(see page 222 therein). An overall advantage of GAM is its simple additive structure

which in the multivariate case allows for more straightforward interpretation of the model
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estimation results, since one can inspect separately the effect of each covariate on the

response variable.

In summary, in most of the aforementioned literature, the number and positions of the

knots are fixed a priori and the (global) degree of smoothness is controlled by a smoothness

penalty parameter estimated based on the data. However, as demonstrated in Section 4

there are many applications where it is desirable to have more flexibility in the spline

predictor component in order to control the smoothness locally. A natural way to achieve

this is by assuming that the knots are free parameters. It is directly verified however, that

knots enter the spline predictor non-linearly and their estimation would require considering

the broader class of generalized non-linear models (GNM) which include GLM as a special

case. The GNM have been considered e.g. by Lane (1996) and Turner and Firth (2015). In

such models, the predictor is nonlinear with respect to only a few of the parameters and is

linear in the remaining ones. So the GNM structure seems not to have been set to naturally

embed free-knot spline models in which the number of nonlinear (knot) parameters can be

quite high. This could be among the reasons why GNM has not been used (to the best of

our knowledge), to implement generalized non-linear spline models with free knots.

Such non-linear models have been considered in the Normal case by e.g. Lindstrom

(1999) but as known the direct ML estimation of the knot locations requires non-linear

least squares optimization, with the corresponding complications and limitations (see Jupp

(1978) and Lindstrom (1999)). Alternative data driven procedures to estimate the knot

positions have been proposed by many authors in the Normal case (see e.g. Spiriti et al.

(2012)). A brief review of the related literature on Normal free-knot spline regression is

provided by Kaishev et al. (2016). These authors have recently proposed a geometrically

motivated approach to variable knot spline regression estimation. More precisely, Kaishev

et al. (2016) propose to view estimation as a geometrically motivated procedure consisting

of two stages. At the first stage, A, a least squares linear spline is fitted to the data,

starting from a straight line, by sequentially adding knots (one at a time), which can

be interpreted as sequentially breaking a stick into smaller polygonal pieces specified by

adjacent left and right end knots, added in the model. At the second stage B, smoother

higher order spline fits are built by viewing them as Schoenberg’s variation diminishing
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spline (VDS) approximations to the piecewise linear spline fit from stage A. Geometrically,

this means that these fits closely follow the shape of the piecewise linear spline fit from stage

A. The latter is viewed as a control polygon capturing the shape of the curve underlying

the noisy data, similarly as designers construct such control polygons in order to capture

shapes of curves and surfaces in Computer Aided Geometric Design applications. They

then compute smoother higher order Schoenberg’s variation diminishing spline curves that

closely follow the control polygon and hence the desired shape. Such geometrically designed

(GeD) variable knot spline regression models have been referred to by Kaishev et al. (2016)

as geometrically designed splines i.e., (GeDS).

As has been demonstrated, GeDS estimation avoids many of the limitations of the

existing knot optimization methods, while at the same time it produces competitive fits

with a low number of knots for a wide range of signal-to-noise ratios and for both sparse

and dense data points at a very low computational cost, utilizing a stopping rule controlled

by two tuning parameters (see Kaishev et al. (2016)). GeDS has also been successfully

been applied in estimating multivariate Archimedean copulas (c.f. Dimitrova et al. (2008))

and in smoothing mortality data (c.f. Kaishev et al. (2009)).

Our aim in this paper is to extend the GeDS methodology developed for the univariate

Normal case to the more general multivariate GNM (GLM) context in which the response

variable may have any distribution from the exponential family (EF) and may depend

on more than one independent variable. We have implemented this generalized GeDS

methodology in an R package, named GeDS, available from the Comprehensive R Archive

Network (CRAN) at http://CRAN.R-project.org/package=GeDS. The latter is used it in

the study of the numerical properties of GeDS (see Section 4 and the online supplement).

We demonstrate, based on a thorough numerical investigation in Section 4 and in the online

supplement to this paper that the nice properties of the Normal GeDS methodology carry

over to its GNM extension and GeDS favourably compares with the existing methods such

as GAM, SPM and GSS implemented in R. In the Normal case, we have also compared

with the adaptive P-splines of Yang and Hong (2017) and the trendfilter fitting method

in the package genlasso of Arnold and Tibshirani (2014)).

The paper is organized as follows. In Section 2 we formulate the spline GNM (GLM)

4

http://CRAN.R-project.org/package=GeDS


fitting problem and its solution based on variation diminishing (shape preserving) properties

of splines, which allows to interpret estimation of the spline regression coefficients and knots

as a geometric operation. In Section 3 we describe the two stages of the GeDS GNM(GLM)

methodology, stage A in which a second order spline predictor is fitted to the data by

sequentially adding knots (one at a time) at appropriate locations, and stage B in which a

third, fourth and higher order spline fits are found by viewing them as Schoenberg’s VDS

approximations to the linear spline fit from stage A. In Section 4 the numerical properties of

GeDS are thoroughly investigated and compared to existing alternative estimators among

which SPM, GSS and GAM. In Section 5 we describe a multivariate extension of the GeDS

algorithm to the case of more than one independent variables utilizing tensor product

splines and their related (shape preserving) variation diminishing property. Finally, in

Section 6 we provide some conclusions and directions of future work.

2 The Spline GNM (GLM) fitting problem: a geome-

tric perspective

In order to introduce GeDS in the GNM (GLM) framework and follow its characterizing

geometric properties, we first introduce some notation and background on GLM and VDS

approximation.

2.1 The GNM (GLM) fitting problem and the B-spline predictor

We denote the response variable by y, assume that its mean, µ = µ(x) = E(y|x) depends

on a single covariate x, and that its distribution belongs to the exponential family, i.e. has

density of the form

f(y;ϑ, φ) = exp

{
yϑ− b(ϑ)

a(φ)
+ c(y, φ)

}
, (1)

where ϑ = ϑ(µ) is the natural parameter, φ is the scale parameter and a, b and c are

functions that characterize the distribution. We also assume that the transformed mean

g(µ) = η(θ;x), where g(·) is the link function, η(θ;x) is the linear predictor and θ is a vec-

tor of unknown parameters. In what follows we will also express µ as µ(x) = g−1(η(θ;x)),
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where g−1(·), is the inverse function of g(·). Given a sample of observations, {xi, yi}Ni=1,

and preliminary selected functions, g and η, standard GLM procedures find the maximum

likelihood estimate (MLE) of the vector of parameters θ, i.e., estimate µ(x) = g−1(η(θ;x)).

For the purpose, the iterative re-weighted least squares (IRLS) algorithm is applied to esti-

mate θ by regressing the (approximated) transformed responses, g(yi), on xi, i = 1, . . . , N

(see e.g. Charnes et al. 1976). The IRLS estimation is terminated when the deviance,

D(µ) = 2
N∑
i=1

{yi(ϑ(yi)− ϑ(µ(xi)))− b(ϑ(yi)) + b(ϑ(µ(xi)))} ,

usually considered as the goodness of fit measure, is minimized. In Section 5 we will extend

the GLM setting to the multivariate case.

We will consider here a more general (non-linear) formulation of the GLM fitting pro-

blem, assuming that the predictor, η(θ;x) is chosen to be a polynomial spline function,

whose degree, number and location of knots are viewed as unknown parameters that need

to be estimated. We denote by Stk,n the linear space of all n-th order spline functions

defined on a set of non-decreasing knots tk,n = {ti}2n+ki=1 , where tn = a, tn+k+1 = b. We

will use splines with simple knots, except for the n left and right most knots which will be

assumed coalescent, i.e.

tk,n = {t1 = . . . = tn < tn+1 < . . . < tn+k < tn+k+1 = . . . = t2n+k} . (2)

We further assume that the predictor component of the GLM is in the form of a spline

function f ∈ Stk,n , expressed as

η(θ;x) = f(tk,n;x) = θ′Nn(x) =

p∑
i=1

θiNi,n(x), (3)

where θ = (θ1, . . . , θp)
′ is a vector of real valued coefficients and Nn(x) = (N1,n(x), . . . , Np,n(x))′,

p = n+k, are B-splines of order n, defined on tk,n. It is well known that
∑j

i=j−n+1Ni,n(t) =

1 for any t ∈ [tj, tj+1), j = n, . . . , n + k, and Ni,n(t) = 0 for t /∈ [ti, ti+n]. In the sequel,

where necessary, we will emphasize the dependence of the spline f(tk,n;x) on θ by using

the alternative notation f(tk,n,θ;x).
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The GLM fitting problem can now be more precisely stated as follows. Given a sample

of observations {xi, yi}Ni=1, estimate the order n of the spline predictor, η ≡ f(tk,n,θ;x),

its number of knots k, their locations tk,n and the coefficients, θ, so that an appropriate

goodness-of-fit measure based on the deviance, which now writes as

D(µ) = D(g−1(f(tk,n,θ;x)))

= 2
N∑
i=1

{
yi(ϑ(yi)− ϑ(g−1(f(tk,n,θ;xi))))− b(ϑ(yi)) + b(ϑ(g−1(f(tk,n,θ;xi))))

}
,

(4)

is minimized. In what follows, we will use the notation D(µ) := D(θp; k, n) in order to

emphasize the dependence of the deviance on the number of spline coefficients p, knots k,

and order n.

As already mentioned, under this formulation of the GLM fitting problem, the predic-

tor component is, in general, non-linear in the unknown parameters, since f(tk,n,θ;x) is

non-linear with respect to the knots tk,n. Note that this is different from the GLM for-

mulations involving smoothing splines where the number of knots and their locations are

pre-determined (usually equidistant), i.e. are not considered unknown parameters. There-

fore it will be more precise to say that the model considered here falls within the class of

the GNM (see e.g. Lane (1996) and Turner and Firth (2015)).

2.2 The B-spline predictor and its control polygon

In order to solve this GNM estimation problem, without confronting the usual complications

stemming from the non-linearity of the predictor η ≡ f(tk,n,θ;x), we alternatively view

f(tk,n,θ;x) as a special case of a parametric spline curve Q(t), t ∈ [a, b]. A parametric

spline curve Q(t) is given coordinate-wise as

Q(t) = {x(t), y(t)} =

{
p∑
i=1

ξiNi,n(t),

p∑
i=1

θiNi,n(t)

}
, (5)

where t is a parameter, and x(t) and y(t) are spline functions, defined on one and the same

set of knots tk,n, with coefficients ξi and θi, i = 1, . . . , p, respectively. If the coefficients ξi
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in (5) are chosen to be the knot averages

ξ∗i = (ti+1 + · · ·+ ti+n−1) /(n− 1), i = 1, . . . , p, (6)

then it is possible to show that the identity

x(t) =

p∑
i=1

ξ∗iNi,n(t) = t, (7)

referred to as the linear precision property of B-splines, holds (see e.g. De Boor 2001). The

values ξ∗i given by (6) are known as the Greville abscissae. We will alternatively use the

notation ξ∗(tk,n), to indicate the dependence of the set ξ∗ on the knots tk,n. In view of

(5) and (7), the (predictor) spline function f(tk,n,θ;x) can be expressed as a parametric

spline curve

Q∗(t) = {t, f(tk,n,θ; t)} =

{
p∑
i=1

ξ∗iNi,n(t),

p∑
i=1

θiNi,n(t)

}
, (8)

where t ∈ [a, b]. In what follows, it will be convenient to use Q∗(t) and f(tk,n,θ; t) in-

terchangeably to emphasize that the GNM predictor, η, is in a functional spline curve

form.

Interpretation (8), of the predictor η ≡ f(tk,n,θ;x) as a parametric spline curve Q∗(t),

allows us to characterize the predictor spline curve Q∗(t) by a polygon, with vertexes

ci = (ξ∗i , θi), i = 1, . . . , p. The latter is closely related to Q∗(t), and is called the control

polygon of Q∗(t), denoted by CQ∗(t), and constructed by connecting the points ci = (ξ∗i , θi)

with straight lines, (see Figure 1).

This relationship is due to the fact that both the x and y coordinates of the vertices of

the control polygon, ci, i = 1, . . . , p, called control points, are related to the linear predictor

spline curve Q∗(t). More precisely the x-coordinates ξ∗i , are the Greville sites, (6), obtained

from the knots tk,n, and the y-coordinates, θi, are simply the spline coefficients, i = 1, . . . , p.

As illustrated in Fig. 1 in the quadratic, n = 3, and cubic, n = 4, cases (left and right

panels respectively), the curve closely follows its control polygon. In particular, it directly

coincides with its polygon when n = 2, is in its close vicinity when n = 3, and deviates a bit
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Figure 1: Quadratic, n = 3, (left panel) and cubic, n = 4, (right panel) functional spline
curves Q∗(t) and their control polygons CQ∗(t). The spline coefficients θ and the sets of
knots t3,3 and t3,4 are arbitrarily chosen, and the corresponding Greville sites ξ∗(t3,3) and
ξ∗(t3,4) are evaluated following (6).

further way from it when n = 4. The latter behaviour is more pronounced for higher degrees

as explained in Kaishev et al. (2016). There are two reasons for this close relationship, one

is that each segment of the curve lies within the convex hull of n consecutive vertexes of

its polygon, as illustrated by the shaded areas on Fig. 1. The second is that, Q∗(t) is

a Schoenberg’s variation diminishing approximation of its polygon. This means that it

preserves the shape of the polygon, i.e., if the latter is positive the curve is also positive,

if it is increasing the curve is also increasing, if it is convex the curve is also convex. For

further details and examples of the close geometric relationship between a parametric spline

curve and its control polygon, we refer to Kaishev et al. (2016).

This relationship suggests that, given n and k, locating the knots tk,n and finding the

coefficients θ of f(tk,n,θ;x), based on the set of observations {yi, xi}Ni=1, is equivalent to

finding the location of the x- and y-coordinates of the vertices of Cf(tk,n,θ;x). This establishes

the important fact that estimation of tk,n and θ affects the geometrical position of the

control polygon Cf(tk,n,θ;x), which, due to the shape preserving and convex hull properties,

defines the location of the spline curve f(tk,n,θ;x). Inversely, locating the vertices ci of

Cf(tk,n,θ;x) affects the knots tk,n, through (6), and the values of θ, and hence affects the

position of the predictor curve f(tk,n,θ;x). As in the Normal case, the latter conclusion

motivates the construction, in stage A of GeDS, of a control polygon as an IRLS fit to the

data, whose knots determine the knots tk,n, and whose B-spline coefficients are viewed as

an initial estimate of θ, which is improved further in stage B (see Section 3). This is the

basis of our approach to constructing the GeD variable knot spline predictor as part of the
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GNM estimation which is summarized in the next section.

3 The GeDS estimation method.

As mentioned, the GeDS methodology in the Normal regression case incorporates two ma-

jor stages, A and B, described in greater details in Kaishev et al. (2016). The main idea

behind generalizing GeDS to fit GNM (GLM), is as follows. At Stage A, the spline pre-

dictor is expressed as a linear combination of second order (degree one) B-splines. Thus,

starting with zero knots and adding knots, one by one at appropriate locations, the best

piecewise linear (predictor) fit to the shape underlying the data is achieved in the transfor-

med predictor scale. At each step of this sequential knot addition, the coefficients of the

spline predictor are estimated by applying the IRLS procedure, used in estimating GLM.

A stopping rule (model selector) based on a ratio of consecutive deviances is applied to exit

Stage A.

At stage B, smoother, higher order spline representations of the GLM predictor compo-

nent are found by viewing them as Schoenberg’s VDS approximations to the linear spline

fit from stage A. The latter VDS approximations are then slightly adjusted to become max-

imum likelihood fits to the data. Therefore, the nearly Schoenberg variation diminishing

maximum likelihood fits of stage B, have very distinct geometric properties in that they

closely follow the shape of the linear spline fit from stage A, viewed as a control polygon.

The geometric properties of VDS have been illustrated in Section 2 see Fig. 1.

It is worth noting that because of the sequential location of the knots, the remaining

unknown parameters at each step of stage A are the B-spline coefficients and therefore the

spline predictor remains in the GLM class. This holds true also with respect to the final

GeDS fit from stage B, as it preserves the (optimal) knot locations of stage A. As a result of

that GeDS is essentially a geometrically motivated procedure that at stage A builds nested

GLM spline predictor models, the final one of which is approximated by higher order GLM

fits in stage B, in order to solve the GNM estimation problem formulated in Section 2.
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3.1 Building the piecewise linear spline predictor in Stage A

The steps of stage A of the generalized GeDS are similar to those described in Kaishev

et al. (2016) in the Normal case, with the LS fitting replaced by IRLS fitting, and the

stopping rule, based on the residual sum of squares replaced by a deviance based stopping

rule. Stage A of the generalized GeDS can be summarized as follows.

Stage A. Starting from a straight line fit and adding one knot at a time, follow the

IRLS procedure to find the linear spline fit f̂ (δκ,2, α̂p;x) =
∑p

i=1 α̂iNi,2(x) with number of

internal knots κ, number of B-splines (and parameters) p = κ + 2 and with a set of knots

δκ,2 = {δ1 = δ2 < δ3 < . . . < δκ+2 < δκ+3 = δκ+4}, such that

φ̂κ = 1− exp{γ̂0 + γ̂1κ} ≥ φexit (9)

where φ̂κ is the least squares fit (with coefficients γ̂0 and γ̂1) to the sample {φh, h}κh=q,

evaluated at κ, and φexit ∈ (0, 1) is a pre-specified threshold level (close to one). The

sample {φh, h}κh=q is obtained by evaluating, at each step in the knot addition process, the

ratios of deviances

φh :=
D(α̂h+2;h, 2)

D(α̂h+2−q;h− q, 2)
, h = q, q + 1, q + 2, . . .

where D(α̂h+2;h, 2) := D(g−1(f(δh,2, α̂h+2;x)) is computed using (4) and q ≥ 1, κ ≥ q+1∗.

Testing the inequality in (9) serves as the stage A model selector. If the number of knots,

κ, is such that the inequality in (9) is fulfilled for the first time in the knot addition

process, then f̂ (δκ,2, α̂p;x) has not significantly improved adding the last q more knots and

therefore, f̂ (δκ−q,2, α̂p;x) is the selected model which adequately reproduces the “shape”

of the underlying data in the predictor scale.

Remark 1. Let us note that the stopping rule (model selector) in (9) represents an expo-

∗This inequality stems from the fact that at least two values of φh are required in order to estimate the
two coefficients, γ̂0 and γ̂1, in the exponent. However, one needs at least three values of φh, h = q, q+1, q+2
in order to have a smoothing instead of interpolation of φh, h = q, q + 1. See also Remark 1.
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nentially smoothed version of the rule

φh :=
D(α̂h+2;h, 2)

D(α̂h+2−q;h− q, 2)
≥ φexit h = q, q + 1, q + 2, . . . (10)

which is a direct generalization of the rule for the Normal GeDS regression proposed by

Kaishev et al. (2016) (c.f. Equation (10) therein). Stopping rule (10) is applied at the first 2

steps in the knot inclusion process of stage A, but can also be used as an alternative to (9).

The motivation behind the exponential smoothing of {φh, h}κh=q is based on the empirical

evidence that φh in (10), grows like 1−exp{−h} as knots are added at appropriate locations

(c.f. Steps 3-8 below), i.e. when h = 1, 2, 3, . . .. Applying (9) as an alternative to (10) leads

to more stability with respect to the number of inserted knots. This is demonstrated in

the online supplement Dimitrova et al. (2017) (see Tables 1 and 2 therein), where stopping

rules (9) and (10) are compared and contrasted to a third, alternative stopping rule. The

latter is based on the fact that

[D(α̂h+2−q;h− q, 2)−D(α̂h+2;h, 2)] ∼ χ2
q h = q, q + 1, q + 2, . . .

which follows from the Wilks’s theorem, noting that the knot-addition scheme in stage A

gives rise to nested linear GeDS models, due to the local properties of B-splines. Therefore,

after each iteration in stage A, one may test whether the lastly added q coefficients are

significant or not and decide to exit stage A. The latter means testing the null hypotheses,

H0 : the reduced (simpler) model f̂ (δh−q,2, α̂h+2−q;x) is true at significance level 1− φexit.

If the realized difference ∆D = D(α̂h+2−q;h− q, 2)−D(α̂h+2;h, 2) is such that

Pr
[
χ2
q ≥ ∆D

]
≥ 1− φexit, (11)

then we cannot reject the null hypothesis and hence, exit stage A.

Note that on average, the number of knots selected with (11) decreases if φexit increases,

in contrast to rules (9) and (10) where the higher φexit the more knots are added before

exit.
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3.1.1 Detailed description of stage A

Next we give a somewhat more detailed description of the steps of stage A of the generalized

GeDS procedure.

Step 0. Let n = 2, k = 0, p = n + k = 2 with initial knot vector δ0,2 = {δi}4i=1, such

that, a = δ1 = δ2 < δ3 = δ4 = b. At the initial step of the IRLS procedure, set l := 0 and

α̂(l)
p =

(
α̂
(l)
1 , . . . , α̂

(l)
p

)′
= (α1, . . . , αp)

′, where α1, . . . , αp are appropriate initial values and

go to Step 1.

Step 1.

1. Evaluate µ̂(l)(xi) = g−1
(
f̂
(
δk,2, α̂

(l)
p ;xi

))
, where f̂

(
δk,2, α̂

(l)
p ;xi

)
=
∑p

i=1 α̂
(l)
i Ni,2(xi),

is the linear spline predictor, fitted at the l-th IRLS iteration, and then calculate the

transformed responses

g(l)(yi) ≈ z
(l)
i (xi) = g(µ̂(l)(xi)) + (yi − µ̂(l)(xi))g

′
(µ̂(l)(xi)), (12)

where, i = 1, . . . , N and g
′
(µ) = ∂g(µ)

∂µ
.

2. Calculate the weights

w
(l)
i = 1/V ar[z

(l)
i |xi] = 1/

[(
g
′
(µ̂(l)(xi))

)2
V ar[Y |xi]

]
. (13)

3. Perform a weighted linear regression of z
(l)
i on xi with weights w

(l)
i , i = 1, . . . , N , i.e.,

find α̂(l+1)
p =

(
α̂
(l+1)
1 , . . . , α̂

(l+1)
p

)′
.

4. Check if ∣∣∣D(α̂(l)
p ; k, 2)−D(α̂(l+1)

p ; k, 2)
∣∣∣

D(α̂(l+1)
p ; k, 2)

≤ dirls, (14)

where the deviance D(α̂(·)
p ; k, 2) := D(g−1(f(δk,2, α̂

(·)
p ;x)) is computed using (4) and

dirls is an appropriate threshold level pre-selected in the IRLS estimation.

If (14) is not satisfied then set l := l + 1 and go to sub-step 1, otherwise calculate
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w
(l+1)
i , using (13), then calculate the weighted residuals

ri = r(xi) = w
(l+1)
i

(
yi − µ̂(l+1)(xi)

)
g
′ (
µ̂(l+1)(xi)

)
set α̂(l+1)

p = α̂p and go to Step 2.

Step 2. If k ≥ q compute

φk :=
D(α̂(l+1)

p ; k, n)

D(α̂
(l+1−q)
p−q ; k − q, n)

(15)

and if k ≥ q+1 find the least squares fit (with coefficients γ̂0 and γ̂1), φ̂h := 1−exp{γ̂0+γ̂1κ}

to the sample {φh, h}κh=q.

Then, as discussed earlier for the model selector in (9), if

φ̂k = 1− exp{γ̂0 + γ̂1k} ≥ φexit

go to Stage B. In all other cases, move to Step 3.

Steps 3-8 follow correspondingly Steps 2-7 of GeDS in the Normal case (c.f. Kaishev

et al. (2016)).

Step 9. Find i∗, 0 ≤ i∗ ≤ k such that δ∗ ∈ [δi∗+2, δi∗+3], set l := 0 and the initial

values for the parameters, α̂
(l)
p+1 =

(
α̂1, . . . , α̂i∗+1, f̂ (δk,2, α̂p; δ

∗) , α̂i∗+3, . . . , α̂p+1

)
then set

p = p+ 1 and k = k + 1 and go to Step 1.

3.2 Detailed description of stage B

Let us now detail stage B of the generalized GeDS, which as in the Normal case consists

of two parts B1 and B2.

Stage B1. Given the (final) fit f̂ (δκ,2, α̂p;x), from stage A with κ internal knots, for

each n = 3, . . . , nmax, calculate the knot placement t̄κ−(n−2),n with κ − (n − 2) internal

knots defined as the averages of the knots δκ,2, i.e.

t̄i+n = (δi+2 + · · ·+ δi+n)/(n− 1), i = 1, . . . , κ− (n− 2). (16)

As has been demonstrated in Kaishev et al. (2016), the choice of the knots t̄κ−(n−2),n,
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according to (16), ensures that the n-th order spline predictor curve f
(
t̄κ−(n−2),n, α̂p;x

)
becomes nearly the VDS approximation to the fit, f̂ (δκ,2, α̂p;x), from stage A, i.e. closely

follows its shape, as explained in Section 2.2 (see Figure 1). Therefore the fit, f̂ (δκ,2, α̂p;x)

can be viewed as (nearly) the control polygon of the predictor curve f
(
t̄κ−(n−2),n, α̂p;x

)
.

Error bounds for this VDS approximation and the optimality properties of the knots are

derived and discussed in Kaishev et al. (2016).

Let us note that, although the spline predictor curve f
(
t̄κ−(n−2),n, α̂p;x

)
obtained at

stage B1, closely follow the shape of f̂ (δκ,2, α̂p;x) and hence, the data, formally it is not a

maximum likelihood estimate to the data {yi, xi}Ni=1. In order to correct this and slightly

adjust its position, in stage B2 its knots t̄κ−(n−2),n are preserved but its B-spline coefficients,

α̂p, are treated as unknown parameters, denoted by θp, p = κ+2, which are then estimated

in a final run of the IRLS procedure as follows.

Stage B2. For each fixed n = 3, . . . , nmax, find the ML estimates θ̂p of the B-spline

coefficients, θp, of the spline predictor curve f
(
t̄κ−(n−2),n,θp;x

)
from stage B1. For the pur-

pose, set l = 0 and run the IRLS procedure similarly as in Step 1 of stage A, but with respect

to the vector θp. More precisely, start by calculating µ̂(l)(xi) = g−1
(
f̂
(
δκ,2, α̂

(l)
p ;xi

))
, and

the transformed responses and weights, substituting µ̂(l)(xi) in (12) and (13) respectively.

Then perform a weighted linear regression of z
(l)
i on xi with weights w

(l)
i , i = 1, . . . , N , to

find θ̂
(l+1)

p =
(
θ̂
(l+1)
1 , . . . , θ̂

(l+1)
p

)′
. Similarly as in (14) check the inequality

∣∣∣D(θ̂
(l)

p ; k, 2)−D(θ̂
(l+1)

p ; k, 2)
∣∣∣

D(θ̂
(l+1)

p ; k, 2)
≤ dirls,

and if it is not satisfied then set l := l + 1 and perform the next IRLS iteration, otherwise

exit with a final estimate θ̂p.

Among all fits f̂
(
t̄κ−(n−2),n, θ̂p;x

)
, of order n = 2, . . . , nmax, i.e. including the linear

fit, f̂ (δκ,2, α̂p;x) from stage A, choose the one of order n̂, for which the deviance computed

as in (4) is minimal.

In this way in stage B2, along with the number of knots and their locations, the order of

the spline predictor is also estimated. This is an important feature of the proposed GeDS

estimation method which is rarely offered by other spline GLM estimation procedures. Of
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course, any of the produced final fits of order n 6= n̂ could be used, if other features were

more desirable, for example if better smoothness were required.

4 Numerical study

In this section, we illustrate how the GeDS method, implemented in the GeDS package, can

be applied to fit simulated and real data, assuming the response variable has a distribution

from the EF. Without loss of generality, we simulate/use Normal, Gamma, Poisson and

Binomial data in order to demonstrate the numerical properties of GeDS. Based on such

data, we have also thoroughly compared the linear, quadratic and cubic GeDS fits to the

GAM, GSS and SPM fits produced by the corresponding R packages mgcv, gss and

SemiPar. As mentioned in the introduction, in the Normal case only, we also compare

with the adaptive P-splines of Yang and Hong (2017) and the trendfilter fitting method

in the package genlasso of Arnold and Tibshirani (2014)).

In the online supplement to this paper (see Dimitrova et al. (2017)), we have also

performed a thorough simulation study of the impact on the GeDS knot location and

related L1 error, (i.e., distance to a “true” predictor function), of different assumptions

and choices made, namely of: sample size (N = 180, 500); level of smoothness of the

underlying function (smooth, medium-smooth and wiggly functions); value of the GeDS

tuning parameter β; alternative model selection criteria (i.e. different stopping rules).

We have tested GeDS on a series of simulated examples based on functions adopted in

many other studies on variable knot spline methods (c.f. Schwetlick and Schütze (1995),

Fan and Gijbels (1995), Donoho and Johnstone (1994), Luo and Wahba (1997) and more

recently Kaishev et al. (2016)) appropriately revised in order to be applicable in the GLM

framework. These functions are used in order to compare GeDS to the alternative methods

such as GAM, GSS and SPM and the corresponding results are presented in the online

supplement Dimitrova et al. (2017).

In the next Section 4.1 we present the results for a test function, first considered by

Schwetlick and Schütze (1995) (see Example 1 below), and we also compare GeDS with

alternative (spline) estimators on the well known (simulated) Doppler example (see Exam-

ple 2 below). In Section 4.2, we consider two real data examples, namely Example 3 based
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on data from materials science (c.f. Kimber et al. (2009)) and Example 4 based on coal

mining data (c.f. Eilers and Marx (1996)).

4.1 Simulated examples

4.1.1 First simulated example

In this section, we illustrate the use of the GeDS regression and the properties of the GeDS

fits compared to fits produced by alternative spline based GLM methodologies such as

SPM, GAM and GSS. We start with the following simulated test example.

Example 1. We assume that the “true” linear predictor, η = f1(x), where

f1(x) = 40
x

1 + 100x2
+ 4, x ∈ [−2, 2], (17)

is a transformed (scaled and translated) version of a similar function used by Kaishev et

al. (2016) to test GeDS under uniform noise (c.f. Section 4.1 therein). We have then

generated random samples, {Xi, Yi}Ni=1, with correspondingly Poisson, Gamma, Normally

and Binomially distributed response variable, y, and uniformly distributed independent

variable, x, i.e.: Yi ∼ Poisson(µi), Yi ∼ Gamma(µi, ϕ) with ϕ = 0.1, µi = exp{ηi} and

ηi = f1(Xi); Yi ∼ N(µi, σ) with σ = 0.2, µi = ηi = f1(Xi); Yi ∼ Binomial(m,µi) with

m = 50, µi = exp{ηi}/ (1 + exp{ηi}), ηi = f1(Xi) − 4; and Xi ∼ U [−2, 2], i = 1, . . . N ,

where N is the sample size (N = 500 and N = 180 are used in the comparison).

Based on Example 1, we compare the fits produced by GeDS with those obtained

from the alternative estimators, GSS (package gss, function gssanova), GAM (package

mgcv, function gam) and SPM (package SemiPar, function spm), and additionally, in

the Normal case only, with the method of Yang and Hong (2017) (coded as Y&H; the

software is provided by the authors as a supplementary material to their paper). For

the purpose of comparison, for all four distributions, i.e., Poisson, Binomial, Gamma and

Normal, we have run GeDS and the alternative fitting procedures 1000 times each, fitting

them to 1000 data samples, generated as described in Example 1 with two sample sizes,

N = 180, 500. The tuning parameter of the stopping criterion (rule) of stage A of GeDS,
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φexit, in all four cases was set to φexit = 0.995. The values of β (the second tuning parameter

in stage A, c.f. Kaishev et al. (2016)) are β = 0.2 for the Poisson case, β = 0.1 for the

Binomial and Gamma cases, and β = 0.5 for the Normal case (the default value suggested

by Kaishev et al. (2016)). The alternative methods were also first run with the default

values of their corresponding tuning parameters and then all the methods, including GeDS,

were run with appropriately tuned parameters. In gss the tuning parameter is α, and it

tunes the stopping rule based on the GCV functional

GCV (λ) =
n−1Y T (I − A(λ))2Y

[n−1tr(I − αA(λ))]2
,

as defined in Gu (2014). By default α = 1 for the binomial case, while α = 1.4 otherwise.

In spm the tuning parameter is directly the smoothing parameter λ. By default its value

is automatically selected by the underlying REML procedure. For GAM the tuning para-

meters considered are the number of knots (the dimension of the basis) which, by default,

is selected internally, and the adaptive smoothing parameter which by default is a global

constant selected as part of the GCV criterion.

The results of these comparisons in the case of N = 500 are presented in Figs 2, 3, 4, 5

and 6 where, in each figure, panel (a) presents sample GeDS fits versus the true predictor

function f1(x); panel (b) presents sample curves of the alternative models versus f1(x);

panel (c) - histogram of the number of internal knots, κ, of the linear GeDS fit; panel

(d) - box plots of the L1 distance, ‖f1 − f̂1‖1 =
∫ 2

−2 |f1(x) − f̂
(
t̄κ−(n−2),n, θ̂p;x

)
|dx, to

f1(x). Related numerical results are summarized in Tables 1 and 2. As can be seen looking

at panels (a), in all four cases GeDS produces linear (n = 2), quadratic (n = 3) and

cubic (n = 4) fits, f̂
(
t̄κ−(n−2),n, θ̂p;x

)
of remarkable quality, as confirmed visually but also

based on their L1 distance summarized in panel (d). Furthermore, as can also be seen

from panels (a), (b) and (d), and from the mean and median of the L1 distance to the true

predictor summarized in Table 1, for all four distributions the GeDS fits (of order 2, 3 and

4) outperform those produced by the alternative methods. The latter tend to be wiggling

around the true predictor function, with GAM more significantly away from f1, especially

around the origin. Overall for all four distributions, the quadratic GeDS performs better

than the linear and cubic ones based on the corresponding mean L1 values (c.f. Table 1),
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with the median L1 for the cubic GeDS slightly better in the Normal and Poisson cases.
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Figure 2: Comparison of the linear (n = 2), quadratic (n = 3) and cubic (n = 4) GeDS fits
with the mgcv, SemiPar and gss models (on the predictor scale, with “true” predictor
function f1(x)), based on fitting 1000 Poisson samples (empty circles), generated according
to Example 1.

The distributions of the number of knots, κ (in general κ− (n− 2), with n = 2 for the

linear GeDS fit), in panels (c) of Figs 2, 3, 4 and 5 are reasonably compact suggesting that

the stopping rule, (9), is stable and consistently selects κ. This conclusion is also supported
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Figure 3: Comparison of the linear (n = 2), quadratic (n = 3) and cubic (n = 4) GeDS fits
with the mgcv, SemiPar and gss models (on the predictor scale, with “true” predictor
function f1(x)), based on fitting 1000 Binomial samples (empty circles), generated according
to Example 1.
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Figure 4: Comparison of the linear (n = 2), quadratic (n = 3) and cubic (n = 4) GeDS
fits with the mgcv and gss models (on the predictor scale, with “true” predictor function
f1(x)), based on fitting 1000 Gamma samples (empty circles), generated according to Ex-
ample 1. Note: SemiPar does not handle Gamma samples.
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Figure 5: Comparison of the linear (n = 2), quadratic (n = 3) and cubic (n = 4) GeDS
fits with the mgcv, SemiPar, gss and Y&H models (on the predictor scale, with “true”
predictor function f1(x)), based on fitting 1000 Normal samples (empty circles), generated
according to Example 1.
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Figure 6: Comparison of the linear (n = 2), quadratic (n = 3) and cubic (n = 4) GeDS
fits with the mgcv, SemiPar and gss models (on the predictor scale, with “true” pre-
dictor function f1(x)), based on fitting 30 Poisson samples (empty circles), adjusting the
corresponding tuning parameters.

GeDS(n = 2) GeDS(n = 3) GeDS(n = 4) GAM SPM GSS

Normal
Mean 0.1588 0.1342 0.1398 0.8260 0.2131 0.2597
Median 0.1554 0.1296 0.1266 0.8125 0.2100 0.2382

Poisson
Mean 0.1347 0.1144 0.1159 0.9750 0.1921 0.2335
Median 0.1311 0.1058 0.1026 0.9377 0.1868 0.1944

Gamma
Mean 0.2396 0.2174 0.2699 0.8652 NA 0.3352
Median 0.2239 0.1928 0.2277 0.8484 NA 0.3200

Binomial
Mean 0.2512 0.2328 0.3055 0.8137 0.2869 0.7294
Median 0.2455 0.2262 0.2715 0.8002 0.2853 0.7292

Table 1: Example 1 - Mean and median L1 distance to the true predictor function.

looking at the descriptive characteristics (mean, median, standard deviation and range) of

the corresponding distributions of κ, summarized in Table 2. It should also be noted that

in all four cases, i.e., Poisson, Binomial, Normal and Gamma samples, GeDS regression

produces fits with relatively small number of estimated regression coefficients, κ−(n−2)+n,

which on average is equal to 16+2, 12+2, 14+2 and 11+2 for the linear (n = 2) GeDS fit

(c.f. Table 2) and is the same (i.e. κ+ 2) for the GeDS fits of higher order (see stage B in

Section 3.2). Indicatively, the average reported degrees-of-freedom for the GAM models is

about 10 in all four cases, and for the SPM about 33 in the Normal and Poisson case and

about 16 in the Binomial case. On the next Example 2 presented in Section 4.1.2 below,

we perform a thorough investigation of the degrees-of-freedom resulting from the GeDS fits

and the alternative models where the advantage of GeDS is clearly demonstrated.
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Normal Poisson Gamma Binomial
Median 14.00 16.00 11.00 12.00

Mean 14.35 16.70 11.26 11.93
SD 3.21 3.31 2.46 3.01

Min 6.00 7.00 2.00 3.00
Max 33.00 30.00 22.00 26.00

Table 2: Example 1 - Descriptive statistics for the distribution of number of internal knots
κ.

In addition, here we have also compared the performance of GeDS and the alternative

GAM, SPM, GSS models by fitting them to 30 Poisson samples, in each case appropriately

adjusting the corresponding tuning parameters described earlier. As can be seen from

Fig. 6, which presents the result of this comparison, GAM and GSS have significantly

improved, although as before, GeDS has remained superior after adjusting the tuning

parameters for all six models (GeDS, n = 2, 3, 4, GAM, SPM, GSS).

Lastly we note that the results obtained for the case of smaller sample size N = 180 are

similar to those obtained for N = 500, namely GeDS produces good quality fits with low

number of knots, compactly distributed around the mean. Hence, the results for the two

choices, N = 180, 500, suggest that GeDS performance is reasonably robust with respect to

the sample size (as was also demonstrated by Kaishev et al. (2016) in the Normal case). For

brevity, the graphical illustrations, detailed statistics and related conclusions for N = 180

are omitted.

Results of further tests including sensitivity of GeDS with respect to the choice of

the stopping rule and the tuning parameters β, φexit and further comparisons with the

alternatives GAM, SPM and GSS, based on four additional test functions commonly used

in the spline literature are presented in the online supplement (see Dimitrova et al. (2017)).

4.1.2 Second simulated example

Here, we present another simulated test example on the Doppler function which will be used

to study the numerical performance and in particular, the (effective) degrees-of-freedom

of GeDS and the alternatives as another way of measuring the efficiency of each met-

hod/model. The Doppler function is highly oscillating, especially near the origin, where
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most of the methods/models fail to recover it.

Example 2. We assume that the “true” linear predictor, η = f2(x), where

f2(x) = 5
√
x(1− x) sin

2π(1 + 0.05)

(x+ 0.05)
, x ∈ [0, 1], (18)

is the well-known Doppler function used by a number of authors, including Kaishev et al.

(2016) (see the online supplement to the latter) and Yang and Hong (2017), to test their

proposed methods in the Normal case. We have simulated random samples, {Xi, Yi}Ni=1,

with Normally distributed response variable, y, and the independent variable, x, is on a

uniform grid in [0, 1], i.e. Yi ∼ N(µi, σ) with σ = 0.2, µi = ηi = f2(Xi); and xi = (i−1)/N ,

i = 1, . . . N , where the sample size is N = 400.

Fig 7 presented below is analogues to Fig 4 of Yang and Hong (2017). It illustrates the

Doppler output fits of GeDS and the alternatives based on one Normal data sample. It

it clear that the GSS (gss) and SPM (SemiPar) fits are underperforming due to lacking

local adaptivity, whereas in the GAM (mgcv) and trendfilter estimates some overfitting

is observed in the less oscillating part of the function. The GeDS model together with the

adaptive P-splines model of Yang and Hong (2017) are fitting the Doppler function well

even close to the origin, where GeDS is slightly better (see the bottom panels of Fig 7).

Next, we employ the concept of generalized degrees of freedom as proposed by Ye

(1998) in order to make an objective comparison between GeDS and the alternative mo-

dels in terms of complexity (see also Shen and Ye (2002), Hansen and Sokol (2014), as

well as Tibshirani (2014) and Yang and Hong (2017)). In Fig 8, we give the residual sum

of squares plotted against the degrees-of-freedom for the quadratic (n = 3) GeDS fit,

mgcv, SemiPar, trendfilter method of Arnold and Tibshirani (2014)) and the adaptive

P-splines of Yang and Hong (2017) (Y&H), based on the results for 100 perturbed Normal

samples following Ye (1998) (see Section 2 therein). As can be seen, the GeDS method

delivers better (numerical) performance with fewer parameters when compared to the al-

ternatives, including the Y&H adaptive P-splines. The latter is also confirmed on the real

data examples presented in the next Section 4.2.
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Figure 7: Comparison of the quadratic (n = 3) GeDS fit with the gss, mgcv, SemiPar,
trendfilter method of Arnold and Tibshirani (2014)) and the adaptive P-splines of Yang
and Hong (2017) (Y&H) (on the predictor scale, with “true” predictor function f2(x)),
based on one Normal sample, generated according to Example 2.
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Figure 8: The residual sum of squares against the degrees-of-freedom for the quadratic
(n = 3) GeDS fit, mgcv, SemiPar, trendfilter method of Arnold and Tibshirani
(2014)) and the adaptive P-splines of Yang and Hong (2017) (Y&H), based on the results
for 100 perturbed Normal samples (Example 2). The (generalized) degrees-of-freedom are
calculated applying Ye (1998)’s approach.
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4.2 Real data examples

In what follows, we illustrate the performance of GeDS on two real data examples from

materials science and coal mining.

Example 3. Our first data set originates from a superconductivity study of Barium-

Ferrum-Arsenide (BaFe2As2) through a neutron diffraction experiment, carried out by

Kimber et al. (2009). The data has been used by Kaishev et al. (2016) to illustrate GeDS

in the Normal case and here, in addition, we will consider the Gamma case. It includes the

sample {xi, yi}Ni=1 of N = 1151 observations of the neutron diffraction intensity, yi viewed

as a function of the angle of dispersion of the neutrons, xi. As can be seen from Fig. 9,

this functional dependence is highly non-linear with numerous intensity peaks occurring at

certain angle values. Smoothing out the noise while at the same time adequately capturing

the peaks is of utmost importance since, as highlighted by Kimber et al. (2009), their loca-

tion, height (and area) carries information about the structural (conductivity) properties

of the BaFe2As2 superconductor. For a more detailed description of the dataset and the

experiment we refer to Kaishev et al. (2016) and Kimber et al. (2009).

Assuming Normally distributed response variable, the number of knots estimated by

GeDS (with tuning parameters φexit = 0.99, β = 0.6) is 227 (n = 3) and the square root

of the sum of squared residuals† is 11653.99. As can be seen from Fig. 9 (a), the GeDS fit,

obtained in 9.6 sec, captures really well the peaks of the response variable and at the same

time is nicely fitting the flat segments. We have also run all alternative models mentioned

above, with default as well as tuned values of the parameters, and the majority significantly

underfit the data with only the adaptive P-spline model of Yang and Hong (2017) (Y&H)

producing an acceptable output (in about 600 sec), see Fig. 9 (b). The latter captures well

the peaks of the data but a closer look reveals substantial overfitting in the flat segments.

This is also confirmed by the fact that the minimum of the stopping criterion is achieved

for a value of the smoothing parameter, λ, very close to zero and the reported degrees of

freedom are 515.69. In fact, as λ is close to zero, the Y&H fit is a spline regression with

515 knots which is over twice as many knots as for the GeDS fit in Fig. 9 (a).

†Note that the value reported in Kaishev et al. (2016) (see Section 4.2 therein) is 10847 which is obtained
by excluding a few end-point observations, as was done by Kimber et al. (2009) for the Rietveld fit.
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Figure 9: Estimated fits to BaFe2As2 data and their corresponding residuals, assuming
Normally distributed response variable: (a) Quadratic GeDS fit; (b) Y&H fit.
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In addition, we fit the same dataset assuming that the response variable follows a

Gamma distribution. This seems reasonable as it is continuous and positive with likely

dependent mean and variance, as suggested by the data. We use the log link function as it

provides more numerical stability than the canonical one. The resulting quadratic GeDS fit

with 238 knots (assuming the ratio of deviances stopping rule in (10) and tuning parameters

φexit = 0.995, β = 0.6 and q = 3) is obtained in 15.9 sec and is illustrated in panel (a)

of Fig. 10. As can be seen, comparing the plotted residuals, it is of similar high quality

as the Normal fit. We have also tested the alternative models (GAM, GSS) and obtained

a somewhat acceptable GAM model by specifying the dimension of the basis (number of

coefficients) to be 241 (i.e. the same as in the quadratic GeDS spline fit 238+3). However,

comparing the corresponding residual plots, one can see that the GAM fit (obtained in 6.6

sec), illustrated in panel (b), is clearly inferior to that of the GeDS fit illustrated in panel

(a) of Fig. 10 and the GAM fit also has the tendency to overfit the flat segments of the

data.

It should also be noted that on this real data example we have tested tuning the pa-

rameter β increasing it from 0.1 to 0.6 which has significantly improved the quality of the

fit (respectively increasing the number of knots). One can therefore conclude that for very

wiggly functions, with sharp peaks, it is natural to put more weight on the residual hight,

i.e. select β = 0.5, 0.6, rather than on the residual range (c.f. Kaishev et al. (2016)).

Overall, given the sharply peaking (unsmooth) nature of the underlying dependence,

in both the Normal and Gamma case GeDS performs very well, capturing the required

locations and heights of the peaks, without oversmoothing flat regions.

Example 4. In our next example we fit GeDS to the coal mining data from Eilers and

Marx (1996).

This dataset includes annual number of severe accidents in the United Kingdom coal

mines for the period from 1851 to 1962. We apply the Poisson GeDS to estimate the

expected number of accidents as a function of time under the exponentially smoothed ratio

of deviances stopping rule given in (9) and with (the default values) φexit = 0.99 and

β = 0.2. The resulting cubic spline fit with 12 knots is the red solid line in Fig. 11 which

may be argued to overfit the data. By tuning φexit to 0.984, we have obtained the cubic
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Figure 10: Estimated fits to BaFe2As2 data and their corresponding residuals, assuming
Gamma distributed response variable: (a) Quadratic GeDS fit; (b) GAM fit.
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GeDS fit with four knots illustrated by the blue line in Fig. 11.

We note that the resulting GeDS fit is similar to the fits produced by the alternative

estimators GAM and GSS. In addition we have also fitted an SPM model and as can be

seen, it underfits the data and deviates significantly from the rest of the estimators, (c.f.

Fig. 11).
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Figure 11: Comparison of the cubic GeDS fits, red (φexit = 0.99) and blue (φexit = 0.984)
lines, with the alternative estimators GAM, (brown dashed line), GSS (black dashed line)
and SPM (orange dotted and dashed line).
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5 Multivariate extension

We demonstrate here that the GeDS methodology can be successfully extended to the mul-

tivariate case of more than one independent variable. For the sake of simplicity and without

loss of generality we consider the case of two covariates, x1 and x2 and generalization to

higher dimensions is straightforward. We consider the two dimensional predictor η(θ;x)

where x = (x1, x2) ∈ D = [a1, b1] × [a2, b2]. We assume that our sample of observations

is now {xi1, xi2, yi}Ni=1 where (xi1, xi2) ∈ D and yi has a distribution from the Exponential

Family defined as in (1). We now assume that the predictor component of the GLM is in

the form of a bivariate spline function

η(θ;x) = f(Tk1×k2 ;x) = θ′ (Nn1(t1;k1,n1 ;x1)⊗Nn2(t2;k2,n2 ;x2)) =
p1∑
i=1

p2∑
j=1

θijNi,n1(t1;k1,n1 ;x1)Nj,n2(t2;k2,n2 ;x2),

where Tk1×k2 = t1;k1,n1 × t2;k2,n2 and t1;k1,n1 , t2;k2,n2 are sets of knots with respect to x1

and x2 with correspondingly k1 and k2 internal knots defined as in (2); p1 = n1 + k1 and

p2 = n2 + k2, ⊗ and × are correspondingly the tensor product and the Cartesian pro-

duct; Nn1(t1;k1,n1 ;x1) = (N1,n1(t1;k1,n1 ;x1), . . . , Np1,n1(t1;k1,n1 ;x1))
′ and Nn2(t2;k2,n2 ;x2) =

(N1,n2(t2;k2,n2 ;x2), . . . , Np2,n2(t2;k2,n2 ;x2))
′ are vectors of B-spline basis functions of order

correspondingly n1 and n2 defined on the sets of knots t1;k1,n1 and t2;k2,n2 and where

θ = (θ11, . . . , θ1p2 , θ21, . . . , θ2p2 , . . . , θp1p2)
′, is a vector of B-spline coefficients.

Similarly as in the univariate case the construction of bivariate and multivariate GeDS

GNM(GLM) models is based on the variation diminishing, shape preserving property, which

directly carries over from the univariate to the multivariate case (c.f. Lyche and Mørken

(2011)). As in the univariate case the GeDS algorithm has two stages, A and B.

Stage A. In the first step of stage A, a bivariate linear spline f̂(∆κ1×κ2 , α̂p;x) with

zero internal knots (κ1 = κ2 = 0) and ∆κ1×κ2 = δ1;k1,2 × δ2;k2,2 is fitted to the data and

the corresponding residuals are analysed as follows. The sample space is subdivided into

m1 and m2 strips with respect to each of the coordinates x1 and x2 and groups of residuals

of similar sign falling within each of the strips are identified, similarly as in the univariate

case (see steps 2–7 of stage A of Kaishev et al. (2016)). Knots are then added, one at a
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time, in either x1 or x2 at a location defined by the group of residuals having maximum

weight measure, ωj, similarly as in steps 5-7 of stage A as described in Kaishev et al. (2016).

The spline with the new knot set is then fitted and residuals are recomputed. This knot

addition process is terminated following the stopping rule described in step 2 of stage A,

or an alternative rule, (as described in Section 3).

Stage B. Given the final fit f̂(∆k1×k2 , α̂p;x) from stage A with κ1 and κ2 internal

knots in each coordinate respectively, in stage B1 calculate the knot placements T̄κ2×κ2 =

t̄1;κ1−(n−2),n × t̄2;κ2−(n−2),n similarly as in (16). As in the univariate case, we note that alt-

hough the spline predictor surface f(T̄κ2×κ2 , α̂p;x), p = p1p2, closely following the shape of

the linear spline fit f̂(∆κ1×κ2 , α̂p;x) from stage A, is not a maximum likelihood estimate

of the data. Therefore in stage B2, as in the univariate case, the spline regression coeffi-

cients α̂p are assumed unknown parameters and the IRLS procedure is applied in order to

compute the ML estimate of the vector of p1p2 unknown B-spline regression coefficients θ

(see stage B2 in Section 3).

5.1 Detailed description of Stage A

Following is a more detailed description of stage A.

Step 0. Similarly as in the univariate case, set n1 = n2 = 2 and k1 = k2 = 0 p1 = p1 = 2

with initial knot mesh ∆0×0 = δ1;0,2 × δ2;0,2, where δ1;0,2 = {δ1i}4i=1 and δ2;0,2 = {δ2i}4i=1

such that a1 = δ11 = δ12 ≤ δ13 = δ14 = b1 and a2 = δ21 = δ22 ≤ δ23 = δ24 = b2;

Step 1. Divide the sample space D into M1 rectangular strips in x1 such that D1j =

[a1 + (j − 1)(b1− a1)/M1, a1 + j(b1− a1)/M1]× [a2, b2], j = 1, . . . ,M1. Consider the sets of

indexes I1j = {i ∈ {1, . . . , N} : (xi1, xi2) ∈ D1j}, j = 1, . . . ,M1, and sort the indexes in each

set I1j so that ∀is, is+1 ∈ I1j, xis2 ≤ xis+12. Similarly, divide the sample space D into M2

rectangular strips in x2 such that D2j = [a1, b1]×[a2+(j−1)(b2−a2)/M2, a2+j(b2−a2)/M2],

j = 1, . . . ,M2. Consider the sets of indexes I2j = {i ∈ {1, . . . , N} : (xi1, xi2) ∈ D2j},

j = 1, . . . ,M2, and sort the indexes in each set I2j so that ∀is, is+1 ∈ I2j, xis1 ≤ xis+11.

Step 2. Similarly as in step 1 of the univariate case, apply the IRLS procedure to find

a bivariate ML spline fit f̂(∆k1×k2 , α̂p;x) and compute the residuals ri and the weights wi,

i = 1, . . . , N .
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Step 3. Similarly as in the univariate case, a stopping rule based on the deviances at

consecutive iterations is checked and, if fulfilled, move to stage B, otherwise continue with

step 4.

Stage 4. Find the position of a new knot as follows.

i) For each j = 1, . . . ,M1, consider the pairs {(ri, xi1)}i∈I2j and find a candidate knot δ∗1j

and its cluster weight ω∗1j according to Steps 3–8 of the univariate GeDS procedure

described in Section 3.1.1. Let j∗1 := arg maxj ω
∗
1j and set δ∗1 := δ∗1j∗1 , ω∗1 := ω∗1j∗1 .

ii) Similarly, for each j = 1, . . . ,M2, consider the pairs {(ri, xi2)}i∈I1j and find a candi-

date knot δ∗2j and its cluster weight ω∗2j. Let j∗2 := arg maxj ω
∗
2j and set δ∗2 := δ∗2j∗2 ,

ω∗2 := ω∗2j∗2 .

iii) If ω∗1 ≥ ω∗2, then a new knot δ∗1 is added so that δ1;k1+1,2 := δ1;k1,2
⋃
{δ∗1}. Otherwise

a new knot δ∗2 is added so that δ2;k2+1,2 := δ2;k2,2
⋃
{δ∗2}.

iv) Go back to step 2.

5.2 Numerical illustration

In this section we illustrate the multivariate GeDS methodology on a bivariate example

assuming Normally distributed response.

Example 5. We assume that the “true” predictor is

η = f(x1, x2) = sin(2x1) sin(2x2), (x1, x2) ∈ [0, 3]2. (19)

We obtain a simulated dataset {xi1, xi2, yi}Ni=1 for which yi = f(xi1, xi2) + εi, where

εi ∼ Normal(0, 0.01), (xi1, xi2) are randomly scattered within [0, 3]2, following a uniform

distribution and N = 400.

This dataset is fitted with the two dimensional version of GeDS, implemented in the

R package GeDS. The resulting bivariate GeDS fit is illustrated in panel (b) of Fig. 12.

Comparing it with the true predictor function plotted in panel (a), one can see that the final

bi-quadratic GeDS fit with k1 = 4 and k2 = 2 internal knots has reproduced it remarkably

well, which is confirmed by the relatively low RSS= 3.702, by using just 400 observation.
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Figure 12: Panel (a) - the “true” function f(x, y) from (19); panel (b) - the bi-quadratic
GeDS spline fit to the 400 data points (green and red dots) obtained by adding Normal
noise to f(x, y).
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6 Conclusions

We have demonstrated that the GeDS methodology developed for the Normal case by

Kaishev et al. (2016) successfully extends to the more general Exponential Family of dis-

tributions in the context of GNM(GLM) models. This has been confirmed by the thorough

sensitivity tests, real data examples and comparisons with alternative spline methods such

as GAM, GSS and SPM, illustrated on various underlying test functions in the paper and

in the online supplement. We have also shown that the intuitive geometric interpretation,

which allows one to follow the entire fitting process is preserved for GeDS generalized to the

exponential family in the univariate as well as in the multivariate GNM(GLM) framework

with more than one covariate.

The GeDS estimation procedure can be flexibly tuned by the choice of the two parame-

ters, φexit and β (see Section 3.1), using prior information (if available, otherwise estimated)

about the smoothness of the underlying function.

The shape preserving variation diminishing knot positioning of GeDS avoids “knot

confounding” and “lethargy” problems which have been reported for other methods (c.f.

Zhou and Shen (2001) and Jupp (1978)). It should also be noted that GeDS does not

rely on costly non-linear optimization as is the case for other free-knot spline methods

and model selection criteria, which is problematic for e.g. highly spatially inhomogeneous

(multivariate) functions requiring many knots.

Another useful feature of the methodology is that it produces simultaneously linear,

quadratic, cubic, and possibly higher order spline fits and offers the flexibility to choose

the degree of the final fit providing best compromise between smoothness and accuracy.

GeDS has strong practical appeal especially in fast and accurate real-time smoothing

when the response variable has any distribution from the exponential family and the pre-

dictor is a highly spatially inhomogeneous (possibly multivariate) function. Practitioners,

academics and other researchers are encouraged to apply the GeDS methodology by ma-

king use of its R implementation available from the Comprehensive R Archive Network

(CRAN) at http://CRAN.R-project.org/package=GeDS.

The numerical results (see Section 4 and the online supplement Dimitrova et al. (2017))

have demonstrated that GeDS favourably compares with existing methods, producing fits
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with a parsimonious number of knots capturing the shape of the underlying predictor

functions both in the case when the latter are smooth or wiggly.

In section 5 we have illustrated the multivariate extension of GeDS. In an ongoing

research we are considering extending multivariate GeDS to cover the family of generalized

additive spline models, which are useful in applications when the underlying predictor

function has an additive (with respect to the independent variables) structure.

Application of GeDS to smoothing real mortality and claims reserving data is also part

of an ongoing research.

SUPPLEMENTARY MATERIAL

R-package GeDS: R-package GeDS containing code for the GNM (GLM) spline fitting

method described in the article. The package also contains all datasets used as

real data examples in the article. (R-package GeDS is available from CRAN at

http://CRAN.R-project.org/package=GeDS.)
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